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Abstract

Roguelike games share a common set of core game mechanics, each complex and in-

volving randomization which can impede automation. In particular, exploration of levels

of randomized layout is a critical and yet often repetitive mechanic, while monster combat

typically involves careful, detailed strategy, also a challenge for automation. This thesis

presents an approach for both exploration and combat systems in the prototypical rogue-

like game, NetHack. For exploration we advance a design involving the use of occupancy

maps from robotics and related works, aiming to minimize exploration time of a level by

balancing area discovery with resource cost, as well as accounting for the existence of se-

cret access points. Our combat strategy involves the use of deep Q-learning to selectively

match player items and abilities to each opponent. Through extensive experimentation with

both approaches on NetHack, we show that each outperforms simpler, baseline approaches.

Results are also presented for a combined combat-exploration algorithm on a full NetHack

level context. These results point towards better automation of such complex roguelike

game environments, facilitating automated testing and design exploration.
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Résumé

Les jeux du genre roguelike partagent un ensemble commun de systèmes de jeu de

base. Ces systèmes sont souvent complexes et impliquent une randomisation qui peut

être un obstacle à l’automatisation. En particulier, l’exploration de niveaux générés aléa-

toirement est un mécanisme critique et pourtant souvent répétitif, tandis que le combat

contre les monstres nécessite généralement une stratégie méticuleuse, ce qui constitue éga-

lement un défi pour l’automatisation. Cette thèse présente une approche pour les systèmes

d’exploration et de combat dans le jeu prototypique roguelike, NetHack. Pour l’exploration,

nous présentons un algorithme qui utilise des occupancy maps provenant du domaine de la

robotique, visant à minimiser le temps d’exploration d’un niveau en équilibrant la décou-

verte de cartes avec le coût des ressources et en tenant compte des points d’accès secrets.

Notre stratégie de combat implique l’utilisation du deep Q-learning pour faire correspondre

de manière sélective les objets et les capacités d’un joueur à chaque adversaire. Grâce à une

expérimentation approfondie des deux approches sur NetHack, nous montrons que cha-

cun surpasse des approches de base plus simples. Nous présentons également des résultats

pour un algorithme de combat/exploration combiné qui peut jouer une version relativement

complète de NetHack. Ces résultats indiquent une meilleure automatisation de ces environ-

nements de jeu complexes, facilitant les tests automatisés et l’exploration de l’espace de

conception.
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Chapter 1

Introduction

Video games often involve a vast array of complexity, arising from the exposition of

game systems which provide challenge and fun to players. Systems can be low-level basic

mechanics, like movement or dice rolling, or more complicated constructs, such as level

map exploration or monster combat, which require more thinking and planning for a player

to master. At the same time, this complexity also poses problems for automated gameplay.

One particular genre of games known as roguelikes typically feature in common several

core systems, including movement, exploration, combat, items, and resource management.

Key to this genre is the idea of randomization: each time a roguelike game is played, the

gameplay experience is different from past playthroughs because of randomly-generated

level layouts, item properties, monsters, or other features. This randomization further adds

to the complexity involved with making automated approaches.

With its common game systems and concept of randomization, the roguelike game

genre provides an interesting and novel environment to experiment with approaches to-

wards automating said game systems. This thesis will examine and attempt to provide

algorithmic approaches to two key roguelike systems: exploration of a game level and

combat with monsters. The prototypical roguelike game NetHack, with extensive versions

of these two systems, will be used as experiment environment. Below we introduce and

motivate the analyses of the exploration and combat systems.
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1.1. Exploration

1.1 Exploration

Exploration in roguelike games is essential to game progress and resource acquisition. The

high level of repetition involved, however, makes it useful to automate the exploration pro-

cess, both as an assistance in game design as well as for relieving player tedium in relatively

safe levels or under casual play. It is also useful to streamline control requirements for those

operating with reduced interfaces [Sut17]. Basic forms of automated exploration are found

in several roguelikes, including the popular Dungeon Crawl Stone Soup.

Algorithmic approaches to exploration typically aim at being exhaustive. Even with

full prior information, however, ensuring complete coverage of a level can result in sig-

nificant inefficiency, with coverage improvement coming at greater costs as exploration

continues [CV16]. Diminishing returns are further magnified in the presence of secret

(hidden) rooms, areas which must be intentionally searched for at additional, non-trivial

resource cost, and which are a common feature of roguelike games. In such contexts the

complexity is driven less by the need to be thorough and more by the need to balance the

time spent exploring a space with respect to the amount of benefit accrued (area revealed,

items collected).

In this thesis a novel algorithm for exploration of an initially unknown environment

is presented. The design aims to accommodate features common to roguelike games, fo-

cusing in particular on an efficient, balanced approach to exploration which considers the

cost of further exploration in relation to the potential benefit. The relative importance of

different areas is factored in, prioritizing coverage and discovery of rooms versus full/cor-

ridor coverage, as well as dealing with discovery of secret areas. The design is intended

to provide a core system useful in higher level approaches to computing game solutions,

as well as in helping good game design. For the former we hope to reduce the burden of

exploration itself as a concern in research into techniques that fully automate gameplay.

The approach takes root from the occupancy map data structure used in robotics, com-

bined with concepts from a variation of said structure used in a video game target searching

algorithm [Isl13]. Planning in the algorithm considers both distance and utility of unex-

plored areas. In this way we can control how the space is explored, following a probability

gradient that flows from places of higher potential benefit.
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1.2. Combat

We compare this approach with a simpler, greedy algorithm more typical of a basic au-

tomated strategy, applying both to levels from NetHack. The NetHack environment gives

us a realistic and frequently mimicked game context, with uneven exploration potential

(rooms versus corridors), critical resource limitations (every move consumes scarce food

resources), and a non-trivial, dungeon-like map environment, including randomized place-

ment and discovery of secret doors. Compared to the greedy approach, our algorithm shows

improvement in overall efficiency, particularly with regard to discovery of secret areas. We

enhance this investigation with a deep consideration of the many different parameteriza-

tions possible, showing the relative impact of a wide variety of algorithm design choices.

Specific contributions of this section include:

• We heavily adapt a known variation on occupancy maps to the task of performing ef-

ficient exploration of dungeon-like environments. Our design represents a significant

deviation from the basic searching process for which the technique was originally

designed.

• We further extend the exploration algorithm to address the presence of secret doors.

Locating and stochastically revealing an unknown set of hidden areas adds notable

complexity and cost to optimizing an exploration algorithm.

• Our design is backed by extensive experimental work, validating the approach and

comparing it with a simpler, greedy design, as well as exploring the impact of the

variety of different parameterizations available in our approach.

1.2 Combat

In many game genres, the mechanic of combat can require non-trivial planning, selecting

attack and defense strategies appropriate to the situation, while also managing resources to

ensure future combat capability. This arrangement is particularly and notoriously true of

the roguelike genre, which often features a wide range of weaponry, items, and abilities

that have to be well-matched to an also widely varied range of opponents. Such diversity

becomes an interesting and complex problem for game AI, requiring a system to choose

3



1.2. Combat

among an extremely large set of actions, which likewise can be heavily dependent on con-

text. As combat behaviours rest on basic movement control and state recognition, the

combined problem poses a particularly difficult challenge for learning approaches where

learning costs are a factor.

This thesis will describe a machine learning approach addressing one-on-one, player

versus monster combat in NetHack. We focus on the core combat problem, applying a

deep learning technique to the basic problem of best selecting weapons, armor, and items

for optimizing combat success. To reduce complexity and accelerate the learning process,

we build on a novel, abstracted representation of the game state and action set. This rep-

resentation limits generality of the AI, but allows it to focus on learning relevant combat

strategy, applying the right behaviour in the right context, while relying on well-understood

algorithmic solutions to lower-level behaviours such as pathing.

We evaluate our learning-based model on three scenarios, each increasing in difficulty,

and demonstrate its improvement over a simple (scripted) baseline combat strategy through

its ability to learn to choose appropriate weaponry and take advantage of inventory contents.

A learned model for combat eliminates the tedium and difficulty of hard-coding re-

sponses for each monster and player inventory arrangement. For roguelikes in general, this

breadth is a major source of complexity, and the ability to learn good responses opens up

potential for AI bots to act as useful design agents, enabling better game tuning and bal-

ance control. Further automation of player actions also has advantage in allowing players

to confidently delegate highly repetitive or routine tasks to game automation.

Specific contributions of this section include:

• We describe a basic deep learning approach to a subset of NetHack combat. Our

design abstracts higher-level actions to accelerate learning in the face of an otherwise

very large low-level state space and action set.

• We apply our design to three NetHack combat contexts, considering battle against

one single (fixed) monster in a limited form and battle against a variety of single

monsters with a full inventory of combat-related items.

• Experimental work shows the learned result is effective, generally improving over a
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1.3. Papers published

simple, scripted baseline. Detailed examination of learned behaviour indicates ap-

propriate strategies are selected.

The combat approach will be further discussed in Chapter 4, while the exploration al-

gorithm will be discussed in Chapter 3. We also attempt to combine these two components

into a general automated strategy for NetHack, presented in Chapter 5. Further background

on the approaches is found in Chapter 2, while related work is outlined in Chapter 6.

1.3 Papers published

Portions of this work were previously published in two conference publications. One poster

paper of four pages described the general exploration algorithm [CV17a], while one full

paper of six pages described the combat approach [CV17b]. I was the primary contributor

to both papers, and co-authored both with my supervisor, Prof. Clark Verbrugge.
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Chapter 2

Background

In this chapter the background to the work proper will be discussed: namely, the game

in which the experiments take place (NetHack) including cursory foci on its relevant sub-

systems, as well as sections on occupancy maps and reinforcement learning, the two main

technologies used.

2.1 NetHack

In this section we will discuss NetHack, a video game of the roguelike genre created in 1987

and maintained to this day by a core team of developers. It was and still is a very popular

game, and is now considered to be a prototypical game of the genre. Gameplay occurs

on a two-dimensional text-based grid of size 80x20, wherein a player can move around,

collect items, fight monsters, and travel to deeper dungeon levels. We will begin with a

brief overview of the game, followed by a study of the subsystems relevant to this thesis

(exploration/combat systems), and end by discussing how we interface with the game. An

example of a NetHack level is shown in Figure 2.1.

The game is a difficult one. To win, a player must travel through all 53 levels of the

dungeon, emerge victorious against the high priest of Moloch and collect the Amulet of

Yendor, then travel back up through all the levels while being pursued by an angry Wiz-

ard and finally ascend through the five elemental planes [NetHack Wiki16b]. Although

detailed statistics for the game are unavailable, on at least one server where NetHack can
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2.1. NetHack

be played, total ascension (win) rate was only 0.605% of over one million games as of

mid-2017 [pNs16].

NetHack has all the features of the canonical roguelike game: random generation of

levels and other game features, permanent death, a turn-based system, grid-based map,

important resource management considerations, combat with monsters, and exploration

and discovery of the game world (this list according to the Berlin Interpretation of rogue-

likes [Int08]). With all of these different systems and the interplay between them, as well

as the high level of difficulty involved, NetHack is quite a complex game, yet has not been

widely studied in an academic context. We detail below the concepts relevant to the present

work: namely, NetHack levels and their exploration, resource concerns, and monster com-

bat.

2.1.1 Exploration in NetHack

Exploration is perhaps the most important mechanic in NetHack – the majority of a player’s

actions will be devoted to discovering the layout of the current dungeon level by moving

around. Here we discuss the basic idea of exploring NetHack levels and why it is important

to explore (i.e., discover rooms) in an efficient manner. We then discuss the presence of

secret areas in NetHack, initially hidden rooms that require further action to discover.

Levels in NetHack consist of these rooms, which are large, rectangular and connected

by maze-like corridors. There are typically around eight rooms in a dungeon level. Levels

can be sparse, with many empty (non-traversable) tiles. For the most part, levels are created

using a procedural content generator (thus allowing our algorithms to be tested on a wide

variety of different map configurations). An example of a typical NetHack map is presented

in Figure 2.1, and other maps can be seen in Figures 2.2, 3.1, and 3.3. At the start of each

level, the player can observe only the contents, walls and doors of the room they have

spawned in, and must explore to uncover more of the map (e.g., by going through a door

and corridors to another room).

Although map exploration is important, it is also exigent to do so in a minimal fashion.

Movement in NetHack is turn-based (each move taking one turn), and the more turns made,

the more hungry one becomes. Hunger can be satiated by food, which is randomly and

7



2.1. NetHack

Figure 2.1 A game of NetHack with the player (‘@’ character, currently in the top-right room) in
battle against a were-rat (’r’ character) on level 4 of the dungeon. A typical NetHack
map is composed of corridors (‘#’) that connect rectangular rooms. Room spaces
(‘.’) are surrounded by walls (‘|’ and ‘-’), and unopened doors (‘+’), which might lead
to other, currently unseen rooms, or cycle around to already visited ones. Monsters
like the were-rat are mostly represented by alphabetical characters, while items are
represented by other miscellaneous characters. The bottom two lines contain infor-
mation about the player’s current attributes and statistics, while the top line displays
a brief summary or narrative of what has occurred in the previous turn.

sparingly placed within the rooms of a level [NetHack Wiki16a]. Most food does not

regenerate after having been picked up, so a player must move to new levels at a brisk pace

to maintain food supplies. A player that does not eat for an extended period will eventually

starve to death and lose the game [NetHack Wiki15]. Many a player has had their game cut

cruelly short in this way.

With this in mind, it is critical to minimize the number of actions taken to explore a level

so that food resources are preserved. Rooms are critical to visit since they may contain food

and items that increase player survivability, and one random room will always contain the

exit to the next level, which must be discovered to advance further in the game. Conversely,

corridors that connect rooms have no intrinsic value. Some may lead to dead-ends or circle

8



2.1. NetHack

around to already visited rooms. Exploring all corridors of a level is typically considered a

waste of valuable actions. Therefore, a good exploration strategy will minimize visitation

of corridors while maximizing room visitation.

2.1.1.1 Secret rooms in NetHack

Secret areas are a popular element of game levels and motivate comprehensive exploration

of a space. These areas are not immediately observable by a player but must be discov-

ered through extra action on the player’s part. Secret areas are present in NetHack; their

generation and discovery action are detailed below.

Secret areas are common in roguelike games in particular, and tend to be procedurally

generated along with the rest of the general map layout. This procedural generation tends

to lessen the reward associated with the area: in NetHack, the contents of secret rooms are

the same as in regular, non-secret rooms, potentially including items, food, or level exit.

However, discovery of secret areas is still important for these occasional items, and in some

instances crucial, if the exit happens to be generated in one, or if a large chunk of the map

is contained within a secret area.

Secret areas are created during NetHack map generation by marking certain traversable

spots of the map as hidden. Both corridors as well as doors (areas that transition between

rooms and corridors) can be marked as hidden (with a 1/8 chance for a door, and 1/100

chance for a corridor) [NetHack Dev Team15]. On average, there are seven hidden spots in

a level. These hidden spots initially appear to the player as regular room walls (if generated

as doors) or as empty spaces (if corridors) and cannot be traversed. The player can discover

and make traversable a hidden spot by moving to an adjacent square and using the ‘search’

action, which consumes one turn. The player may have to search multiple times since

revealing the secret position is stochastic.

Just like regular movement, searching consumes actions. The choice of locations to

search, therefore, as well as the number of searches to perform at each location, must be

optimized in order to preserve food resources. Intuitively, we would like to search walls

adjacent to large, unexplored areas of the map for which there do not appear to be any

neighbouring frontiers. Similarly, corridors that end in dead-ends are also likely candidates

9



2.1. NetHack

for secret spots, as seen in Figure 2.2.

Figure 2.2 A NetHack map with the player having visited all non-secret positions. The vast ma-
jority of the map is still undiscovered, likely due to the presence of a secret corridor
immediately north of the player’s current position.

Due to the random positioning of secret doors and corridors in NetHack, it is not a

good idea to attempt to discover every single hidden spot on a map. Some secret doors or

corridors may lead to nowhere at all, or perhaps lead to another secret door which opens

into a room that the player has already visited. Depending on map configuration, a player

may be able to easily spot such an occurrence and avoid wasting time searching in those

areas, but in other cases it might not be so easy. There is also a tradeoff between finding all

disconnected rooms in a map and conserving turns; if only a small area of the map seems to

contain a hidden area, then spending a large effort trying to find it may not be worthwhile.

2.1.2 Combat in NetHack

Combat is another essential part of NetHack, and one that lends perhaps the most difficulty

to the game. The vast majority of player deaths can be attributed to dying in battle to one

10



2.1. NetHack

of the over 375 monsters lurking in the dungeons, deaths caused either by incorrect combat

movement tactics, items used, or unfortunate choice of equipment. In addition to the many

monsters and their special properties and abilities, complexity also arises from the plethora

of items the player can find and the choice of which to equip or use against any particular

monster.

Each monster can have special attributes: some have brute strength, others can use

magical items, and still others have intrinsic abilities such as disintegrating breath attacks,

gaze of the Medusa, or splitting in two ad infinitum upon being attacked. A player must de-

velop strategies for each particular monster in order to survive. These strategies commonly

involve the choice of a specific weapon to attack with, armor to equip, and/or the use of

special scrolls, potions, wands, spells, and other miscellaneous items. As an example, a

player must be careful in choosing a weapon to use against a pudding-type monster, since

contact with iron would cause the pudding to divide in two [NetHack Wiki17a].

Monsters are randomly placed throughout the levels of the game based on the dungeon

level number; more difficult monsters appear further on in the game. Other monsters are

not generated randomly, appearing (possibly only once) on a fixed level. Each monster

has an experience level and difficulty rating. Experience level influences toughness in

combat while difficulty rating takes into account damage output as well as special abilities.

Toughness is also affected by dungeon level and player experience level.

Items are also randomly placed throughout the dungeon. As mentioned above, there

are many different item types: weapons (melee and ranged), armor (helms, gloves, etc.),

scrolls, potions, wands, and more. Each item can be one of blessed, uncursed or cursed (re-

ferred to as BUC status); blessed items are more powerful than their uncursed counterparts

while cursed items may cause deleterious effects. Further, each item is made of a certain

material (iron, silver, wood, etc.); materials interact with the properties of certain monsters

(e.g., many demons are particularly susceptible to silver weapons). Weapons and armor can

also have an enchantment level (positive or negative) which relates to their damage output,

as well as an integrity level (‘condition’) based on their material (wood items can be burnt,

iron items corroded, etc.).

Resource management, mentioned earlier with respect to movement and food, also

comes into play here. Due to the scarcity of items, those with more powerful effects should
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be conserved for stronger monsters and not be wasted on the weak; we do not deal with

this issue in this work.

2.1.3 Interfacing with NetHack

Throughout the past decades there have been quite a few automated players (‘bots’) created

for NetHack, and all face the same problem of speed. Since NetHack is a game played

through a console window, and sometimes hosted on servers, there is an inherent delay in

sending and receiving game commands and state information. In addition to this delay,

there are other associated difficulties such as emulating a terminal interface, managing a

Telnet connection, etc. The delay in particular would make any large-scale experiments,

such as those involving reinforcement learning applications, intractable in this context.

Several different approaches have been proposed to solve this issue over the years [MLO+09],

but here we introduce a new method. We directly modify the NetHack game code in order

to support the creation of two-way socket communication (using the ZMQ library [Hin11])

between the game and experiment processes. Through sockets we can send the keyboard

character corresponding to the chosen action we want to take, and NetHack will send back

the currently-visible game map and player attributes/statistics, i.e., all information other-

wise visible to a player via the typical terminal interface. The use of sockets in this manner

dramatically improves the speed of game playthroughs and eliminates issues relating to in-

terception of a terminal interface. This approach is similar to what was done for the game

of Rogue with the ROG-O-MATIC bot [MJAH84].

2.2 Occupancy maps

A popular algorithm for exploration purposes sometimes used in robotics is known as oc-

cupancy mapping [ME85,Mor88]. This approach, used in conjunction with a mobile robot

and planning algorithm, maps out an initially unknown space by maintaining a grid of cells

over the space, with each cell representing the probability that the corresponding area is

occupied (by an obstacle or wall, e.g.). As the robot moves around and gathers data about

the environment from its various sensors, said data is integrated into the occupancy map.
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With this data structure, knowledge within a certain confidence margin can be established

as to which areas of the space are traversable, with the data from different sensors being

combined to even out sensor inaccuracies.

A frontier is a term often used in conjunction with occupancy maps and exploration. It

is a discrete point (coordinate) in an occupancy map on the boundary between known and

unknown space. For example, a known door in a NetHack map which has not yet been

visited would be considered a frontier. Planning in occupancy maps, i.e., choosing where

to move next, is performed by visitation of selected frontiers, with selection often occurring

through use of a frontier evaluation function.

Research using occupancy maps is usually intertwined with these sensor concerns, and

so is not relevant to the current video game environment. However, what is retained is

the idea of mapping a space onto a discrete grid with probabilities for obstacles. This

same basic idea of occupancy maps has also been incorporated into a similar algorithm

in video game research, detailed below. There is also other work in robotics dealing with

probabilistic target search that does not involve occupancy maps, such as the Bayesian

approach by Bourgault et al. [BFDW06].

2.2.1 Occupancy maps in video games

A flavour of occupancy maps has also been used in video games, proposed by Damián Isla.

This algorithm is significantly different than the original robotics conception and is geared

towards searching for a moving target in a video game context [Isl05]. It has been used in

at least one game to date [Isl13].

Like the original occupancy map, in this algorithm a discrete grid of probabilities is

maintained over a space (e.g., game map), but here a probability represents confidence in

the corresponding area containing the target or not. A non-player character (NPC) can

then use said map to determine where best to move in order to locate a target (such as the

player).

At each timestep, after the NPC moves, probabilities in the grid will update to account

for the target’s movement in that timestep. At any timestep, the searcher (NPC) can only

be completely confident that the target is not in the cells within its field-of-view, and so
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can set those cells to 0 probability. If the target is in sight, then the NPC can simply

move towards them; if not, then probabilities in the grid will diffuse to their neighbours, to

account for possible target movements in the areas outside the searcher’s current field-of-

view. Diffusion for each cell n outside of the NPC’s field of view at time t is performed as

follows:

Pt+1 (n) = (1−λ )Pt (n)+ λ

|neighbours(n)| ∑n′∈neighbours(n)Pt (n′)

where λ ∈ [0,1] controls the amount of diffusion.

Our implementation of occupancy maps borrows concepts from Isla’s formulation,

namely the idea of diffusion, which is repurposed for an exploration context.

2.3 Reinforcement learning

Reinforcement learning (RL) is a technique that allows an agent to explore the state space

of an environment with the goal of maximizing reward. By taking actions, which alter the

current environment state, and receiving rewards, the agent can learn the best action to take

in any state. We say that an agent observes a state st ∈ S at each timestep t, chooses an

action at ∈ A to perform in that state, and then observes a reward Rt+1 and resultant next

state st+1. The goal of the agent will be to maximize its long-term reward over the course

of its actions in the environment.

The formalization of the classical RL environment comes in the form of a Markov De-

cision Process (MDP). An MDP consists of a set of states and actions, as well as transition

probabilities from each state to another given any action, and a reward function that outputs

a numeric value for each state-action pair. As given by the name ‘Markov,’ states in the

MDP must have the Markov property: each state must comprise sufficient information of

the past history of observed states; i.e., the probability of observing a reward rt+1 and next

state st+1 can be conditioned solely on the current state st and action at , and not all prior

states s0...st−1 and prior actions a0...at−1.

An RL agent in an MDP will learn a policy π , which maps states to action probabilities.

π(a|s) refers to the probability that action a will be chosen in state s. The optimal policy

in an MDP, π∗, seeks to maximize the sum of obtained rewards or return, i.e. Gt = Rt+1 +

γRt+2+γ2Rt+3+ .... The γ parameter here is referred to as the discount factor, and controls

14



2.3. Reinforcement learning

how much the agent favors rewards farther into the future versus immediate rewards.

While following a policy π , we can define the value of a state-action pair, qπ(s,a). In

any particular state s while following π , an agent wishing to maximize optimal return can

choose the action a ∈ A that maximizes qπ(s,a). The optimal policy π∗ is greedy with

respect to the action-values for each policy: q∗(s,a) = maxπqπ(s,a).

An important topic in learning algorithms is the problem of exploration versus exploita-

tion. The goal of an agent is to exploit the environment, by choosing the best action in each

state to maximize reward (i.e., following the best policy). However, in order to determine

the best action for any state, the environment must first be explored: only by trying all

actions in each state can the agent establish which is best. A common way to let the agent

explore is to introduce forced exploration at the policy level. One technique, known as ε-

greedy exploration, lets the agent take a non-optimal (exploratory) action with probability

ε , and otherwise take the current optimal action. ε is often annealed throughout training

from a large to small value, in order to do more exploration at the beginning when action-

values are uncertain, and less at the end when they have been tried more often.

More details on reinforcement learning, as well as Q-learning and the other topics dis-

cussed later in this section, can be found in the comprehensive reinforcement learning

textbook by Sutton & Barto [SB98].

2.3.1 Q-learning

One algorithm used to find an approximation to the optimal action-value function, q∗, and

thus approximately optimal action choices for each state, is called Q-learning. Q-learning

updates action-values using the following formula, which takes into account the current

action-value for state s and action a (i.e., q(St ,At)), the reward observed by taking action a

in state s (Rt+1), and the value of the best action in the next observed state [WD92].

q(St ,At) = q(St ,At)+α[Rt+1 + γmaxaq(St+1,a)−q(St ,At)]

where α is a parameter that influences learning rate and γ is the aforementioned discount

factor. Convergence of the algorithm requires that all state-action pairs be visited in the
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limit infinitely often.

Q-learning is an off-policy algorithm. Off-policy algorithms are those that employ two

policies: the target policy π , which is what we seek to optimize as usual, and the behaviour

policy b, which is what we use to generate data with which to update the target policy. For

example, in Q-learning, we could have the behaviour policy be an ε-greedy policy, and

the target policy be a fully greedy policy (i.e., always picking actions with respect to the

highest action-value). Off-policy learning is useful in several cases and in some necessary,

e.g., when we have been given data generated by some unknown, non-optimal method (not

necessarily from a learning algorithm) and seek to derive from it an optimal policy; in such

a case, the unknown data can be thought of as coming from the behaviour policy, with

optimal as greedy policy. It is also useful since it allows for more exploration while still

learning the optimal policy. However, off-policy algorithms also present various stability

issues since they introduce variance (caused by the differences in the two policies) and may

be slower to converge than on-policy methods.

Another issue with Q-learning is scalability. In regular Q-learning, action-values are

typically stored in a tabular form, with each table row having a state and its associated

action-value (or alternatively, a dictionary-type data structure). As the algorithm pro-

gresses, empty action-values get filled in and others updated. This situation becomes less

tractable as the state space grows; more and more memory must be devoted to the table’s

maintenance. At a certain point, the memory requirements become too onerous. In a large

enough state space, it is unlikely that the same state may even be observed more than once,

leading to low accuracy anyway. These problems motivate the need for a more efficient

method to keep track of action-values, which brings us to the topic of function approxima-

tion.

2.3.2 Learning with function approximation

In situations where a state space is intractably large, the tabular setting is dispensed with to

make way for the use of a function approximator. Such an approximator can be thought of

a black box that takes in a state, does some sort of processing, and returns an action-value.

The regular tabular action-value form is subsumed under this, but a table always produces
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correct results – that is, the value you record in it for a state is the same value you get out

if you query that state once more. A function approximator is less transparent: a change

to the action-value of one state may at the same time modify in some unknown way the

action-values of other states. This perhaps alarming property is actually quite useful since

it gives the concept of generalization.

As mentioned above, some state spaces are so large that even with very long training

times, a state may never be visited more than once or twice. Thus it becomes futile in

these settings to run an RL algorithm that stores action-values in a table (although some

approaches do exist), since without infinite visits to each state, an optimal or even near-

optimal policy cannot be found. However, with function approximation, this restriction can

be lifted. Learning with function approximation allows for experience with a small subset

of the large state space to generalize over a much larger subset with reasonable accuracy.

The key idea is that modifying the action-value of one state will also modify the action-

values of ‘related’ states. Thus by visiting one state, we can actually gain information about

a much larger set of states.

Such generalization requires a way to infer which states are similar to other states,

in order for them to be ‘grouped together’ in some fashion so that an update to one will

update to some extent the others in the group. Luckily, other fields of machine learning,

i.e., supervised learning, are studying this very concept. Methods such as artificial neural

networks are prime contenders for the aforementioned function approximator; they will be

discussed here as they are most relevant to the presented work.

2.3.2.1 Neural networks

Neural networks take in input (e.g., the state) and return an output (e.g., the action-value),

and through the process of supervised learning, strive to approximate a function from the

data, with this approximation giving generalization of input features. There is quite a bit

of background needed for a proper understanding of neural networks; here we give a brief

overview with a focus on parameter settings, since they will be discussed further on.

A neural network is made up of layers, with one input layer, one output layer, and possi-

bly one or more hidden layers in between, as shown in Figure 2.3. Each layer is made up of
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Figure 2.3 An example of a fully-connected, feed-forward neural network with an input layer of
3 units, one hidden layer of 4 units, and an output layer of 2 units [Glo13] (licensed
under CC BY-SA 3.0).

a configurable amount of units. In a regular, fully-connected, feed-forward neural network,

the units of each layer are connected to all units of the following layer. Each connection,

or link, between units has a particular weight associated with it. These weights “roughly

correspond to the efficacy of a synaptic connection in a real neural network” [SB98]. In-

put to the neural network will travel from the input layer to each successive layer on all

links; each unit, on receiving input, will “compute a weighted sum of their input signals

and then apply to the result a nonlinear function [...] to produce the unit’s output” [SB98].

An example of an activation function is the logistic function.

The more hidden layers in the network, the better the function approximation. Even

with one hidden layer, a vast number of continuous functions can be learned, and most

applications seem in practice to not need more than a few. Recently, however, the use of

multiple hidden layers has come into vogue with the popularity of convolutional neural

networks, which are specially designed to deal with image or time-series data. However,
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non-linear neural networks (that is, networks with one or more hidden layers) are less

well understood theoretically and have less guarantees compared with the standard linear

approaches.

A neural network is usually trained using the backpropagation algorithm. During train-

ing, the weights attached to each link between units are updated in order to minimize loss

and thus increase accuracy of the network on future training iterations. Through training,

units can ‘specialize’ in certain parts of the input, increasing their weights on certain inputs

and decreasing on others; it is sometimes said that units pick out different ‘features’ of the

data. When using a neural network as replacement for the action-value table in RL, the

neural network’s task is to approximate the optimal action-value function, Q∗.

The use of neural networks as function approximators has important advantages: they

allow generalization amongst similar states, and their weights have very low memory re-

quirements compared to tabular algorithms. But their use also presents some difficulties.

One issue that frequently arises in supervised learning and is present to some degree in

RL is that of overfitting. With certain combinations of hyperparameters, or with limited

training data, the neural network weights may obtain great success on training data, but fail

when later presented with slightly different data, since the network’s weights have become

too specialized on the training data.

When combining non-linear function approximation with off-policy learning (such as

Q-learning), however, larger issues like action-value instability or divergence begin to man-

ifest; see Baird’s counterexample for an in-depth explanation [Bai95]. To come up with a

solution that works at least in application to these problems, we turn to deep Q-learning.

2.3.2.2 Deep Q-Learning

Deep Q-learning (DQL) is a novel variant of the regular Q-learning algorithm, intended

to correct instabilities that appear when using non-linear function approximation. The two

main proposals of DQL, detailed below, are experience replay as well as introducing a

second Q-network to store intermediary values, along with various other modifications.

Introduced by the Google DeepMind team in 2014, this algorithm was shown to outper-

form human experts on several Atari 2600 arcade games when using a particular neural
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network structure, including the use of convolutional neural networks, called a Deep Q-

Network [MKS+13, MKS+15]. We use a similar approach for our combat agent but with-

out convolutional neural networks, described in Chapter 4.

Experience replay is a technique that softens instabilities during the learning process

by randomizing the order of data fed to the neural network. If data passed to the neural

network is correlated in some way (as it would be if passed in sequence as the RL agent

explores the environment), then the ‘i.i.d.’ assumption of the data (independent and iden-

tically distributed) is broken, leading to potential divergence. The solution is to create a

buffer of past observations, called experiences or ‘memories.’ At each timestep, the agent’s

current state, chosen action, reward observed, and next state (st ,at ,rt ,st+1) are stored in the

replay buffer. During learning at each timestep, experiences are sampled randomly from

this buffer and used to update the neural network.

Another modification to soften instability is the introduction of a second neural network

to generate targets for the Q-learning algorithm (for use in loss computation). On a certain

fixed schedule, weights from the regular neural network are copied over to the target neural

network. This delay dampens issues arising from large magnitudes in updates that could

otherwise lead to large oscillations or divergence.

Other, smaller tweaks were also proposed, such as clipping rewards in the [−1,+1]

range, and the algorithm was further refined in [HGS16] and [WSH+16].
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Chapter 3

Map Exploration

In this section we detail the basic exploration algorithm involving occupancy maps, and

contrast it with a simpler, greedy approach as well as an approximately optimal solution.

Key to our algorithm is the idea of limiting exploration to a subset of interesting space

in order to minimize exploration time, by taking into account frontier utility and distance.

We begin by discussing the modified NetHack environment in which the algorithms will

run, followed by an outline of each algorithm with and without support for detecting secret

areas. Results and discussion close the chapter with an emphasis on analysis of algorithm

parameters.

3.1 NetHack environment

A modified version of the base NetHack game is used to test our exploration algorithms.

Mechanics that might alter experiment results were removed, including monsters, star-

vation, weight limitations, locked doors, and certain dungeon features that introduce an

irregular field of view. In addition, a switch to enable or disable generation of secret doors

and corridors was added. Some of these limitations are relaxed in a later chapter.

The maps used in testing are those generated by NetHack for the first level of the game.

An example of a fully revealed map can be seen in Figure 3.1. The same level generation

algorithm is used throughout a large part of the game, so using maps from only the first level

does not limit generality. Later levels can contain special, fixed structures, but there is no
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Figure 3.1 An example of a fully-explored NetHack map. In this map, a large corridor in the
middle connects many rooms together.

inherent obstacle to running our algorithm on these structures; we are just mainly interested

in applying exploration to the general level design (basic room/corridor structure).

The algorithms below use the standard NetHack player field of view. When a player

enters a room in NetHack, they are able to immediately perceive the entire room shape, size,

and exits (doors). Conversely, in corridors, knowledge is revealed only about the immediate

neighbours to the player’s position. Our algorithms will gain the same information as the

player in these cases. We do not however support ‘peeking’ into rooms, where a player can

perceive a portion of a room by being parallel to and within a certain distance of one of its

doors.

3.2 Exploration algorithms

Here we present three algorithms: a trivial greedy approach which guarantees complete

coverage of a space, an approximately optimal room visitation algorithm (given full prior

knowledge of the map), as well as a nuanced approach based on occupancy maps, which
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will only visit frontiers considered useful and do so in a specific order.

3.2.1 Greedy algorithm

A greedy algorithm is used as baseline for our experiments, which simply always moves

to the frontier closest to the player. This type of approach is often formalized as a graph

exploration problem, where we start at a vertex v, learn the vertices adjacent to v, move to

the closest unvisited vertex (using the shortest path) and repeat [KTH01]. The algorithm

terminates when no frontiers are left. We also take into account the particularities of the

NetHack field of view as described above; when we enter a room, all positions in the room

are set to visited, and its exits are added to the frontier list.

Note that this formulation will by nature uncover every traversable space on the map,

both rooms and corridors alike.

3.2.2 Approximately optimal algorithm

For a lower bound on the number of moves needed to visit all rooms of a NetHack map, we

present an approximately optimal algorithm. We call the algorithm ‘optimal’ since it will

be given the full map at the start and so can plan the best route to take for room visitation. It

is only approximate since it will seek to visit the centre of each room, while a faster version

could move from room exit to room exit, avoiding the centre and thus saving a couple of

moves per each room on a map.

To run this algorithm, we construct a complete graph where each vertex represents

the centroid of a room on the current NetHack map, and edges between room centroids

represent the shortest distance between them in map units (calculated using A*). We then

pass this graph to a travelling salesman problem solver, along with the player’s starting

room. In order to prevent the TSP solver from returning to initial centroid at end, we add

two ‘dummy’ vertices, one with a connection to every other vertex at cost of 0, and the

other connected to the starting room and other dummy vertex with cost of 0, as suggested

by [LLKS86].

This solution will guarantee exploration of all rooms, but not necessarily all corridors

(similar to the occupancy map algorithm, below). It is thus a lower-bound to said algo-
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rithm, but unlike the former cannot explore intrinsically since it must know the full map in

advance.

Note that this problem is similar to the shortest Hamiltonian path problem, which at-

tempts to find a path that visits each vertex on a map, but requires that each vertex only

be visited once which could sometimes lead to suboptimal routes and in other cases fail to

find a solution (e.g., if the graph has more than two terminal vertices).

3.2.3 Occupancy map algorithm

An exploration strategy typically has two key parts: the internal representation of the space

to be explored, and how said representation is used in deciding where to move next. Both

components of our strategy will be described below, in addition to a detailed look at how

diffusion, a concept from Damián Isla’s algorithm for searching for a moving target, is

used as the engine that drives planning. Diffusion will also help in deciding when to stop

exploring, another important component.

The main goal of the algorithm is to optimize exploration time by prioritizing visita-

tion of areas most likely to confer benefit (rooms) while minimizing travel in unhelpful

areas (corridors). To identify which unexplored areas are more likely to confer benefit,

we combine an occupancy map as representation with a frontier list and frontier evalua-

tion function. As mentioned earlier, only the rooms (and not corridors) of a NetHack level

contain food (necessary for survival) and other useful items, so minimizing corridor visi-

tation (by ignoring certain frontiers) does not have any drawback with regard to food/item

collection.

A key parameter of the algorithm is the probability threshold value. The threshold value

controls in a general sense the cutoff for exploration in areas of lower benefit; a higher

value will mark more frontiers as unhelpful and thus focus exploration on areas of higher

potential benefit (giving a tradeoff between time and amount explored). This threshold

can be fixed at the start of the algorithm, or in another formulation, vary depending on the

percentage of map uncovered (ignoring more frontiers as more of the map gets uncovered).
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3.2.3.1 Representation

To represent the map of a NetHack level we use a structure similar to an occupancy map,

which will store information about the map as in robotics. However, there are certain

key differences here, since we would like to have a data structure that helps us determine

general areas that are beneficial to visit (i.e., locations of as yet undiscovered rooms in a

NetHack map), not just locations of obstacles (walls).

In robotics, an occupancy map is used to mark areas that contain obstacles; here we

use it to mark visited (open) areas. Each cell of our occupancy map contains a probability,

like in robotics, but instead of representing the likelihood of an obstacle, here it is rather an

estimate of how likely that cell/area is to contain an unexplored room. Thus, a probability

of zero means there is no chance an unexplored room can be found in that cell; we thus

assign zero probability to any already visited room/corridor cell. Specifically, whenever we

observe a room/corridor, we add its coordinate(s) to our memory; at each timestep, we set

the probability of each coordinate’s cell in our memory to 0 in the occupancy map (they

are reset to 0 at each timestep since the diffusion step below may alter them). After setting

a cell to 0 for the first time, all cells in the grid are then re-normalized to ensure the total

map probability sums to 1.

Figure 3.2 gives a visualization of a sample occupancy map, with darker areas corre-

sponding to lower probabilities (e.g., visited rooms).

3.2.3.2 Diffusion

Diffusion of probabilities is a central concept in Isla’s algorithm, as described in Chap-

ter 2.2.1, and we here adapt it for two purposes: to elicit a gradient of probability that flows

from visited areas into unknown areas, in order to better measure the utility of frontiers,

as well as to separate the occupancy map into distinct components of high probability. We

leave explanation of the latter purpose for a later section, here discussing the former, in

addition to describing how and when to run diffusion.

Diffusion affects the utility of a frontier. By dispersing the zero probability of visited

rooms into surrounding areas, frontiers close to low probability areas can more easily be

identified and ignored during exploration. This effect is desirable since these frontiers
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Figure 3.2 Visualization of an occupancy map (bottom) with corresponding NetHack map (top).
Lighter areas are more likely to contain an undiscovered room. The player is shown
as a blue circle, and current target frontier shown as blue triangle. Other frontiers
are shown as green triangles, while red triangles represent frontiers that will not
be visited due to being in areas of low probability. Components with neighbouring
frontiers are highlighted in a criss-cross pattern, while components without nearby
frontiers are not marked.

likely do not lead to as yet undiscovered rooms. Figure 3.2 shows these low utility frontiers

as red triangles. In particular, a frontier is ignored when all of its neighbouring cells have

probability below the threshold value. For a more forgiving measure, the neighbours of
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neighbours could also be checked – or neighbours up to n distance away.

An example the advantageousness of this diffusion can be seen in the NetHack map of

Figure 2.1. At the bottom of the map, there is a room in the centre that has an unopened

door on its left wall. A few spaces past this wall, there is a visited corridor spot. When the

occupancy map algorithm is run, the low probabilities from the visited corridor and visited

room will diffuse towards each other, lowering the utility of the door/corridor frontiers.

This behaviour is desirable since there is no need to visit what is highly likely to be a few

more corridor spaces that only connect the two visited areas. The same effect can be seen

in the map of Figure 3.2, where the centre-top room has an unopened door in its top-left

corner; low probabilities from the nearby visited corridors have diffused towards the door

and so it will not be visited.

Diffusion is performed by imparting each cell with a fragment of the probabilities of its

neighbouring cells, as given in the diffusion formula in section 2.2.1. For extra diffusion,

we also diffuse inward from the borders of the occupancy map. Specifically, when updating

cells that lie on the borders, we treat their out-of-bounds neighbours as having a fixed low

probability. Diffusing in this manner lessens the utility of frontiers that lie near the borders,

which are in fact most likely dead-ends. It also tends to increase separation of components

of high probability (since rooms/corridors rarely extend to the edge of the map).

Diffusion is only run when a new part of the map is observed (i.e., new room or corri-

dor). By diffusing only at these times, probabilities in the occupancy map will not change

while we are travelling to a frontier through explored space (and neither will the length of

distance travelled have an effect). Probabilities will diffuse at the rate that map spaces are

uncovered, and stop when the map is completely known.

This scheduling is the opposite of the diffusion in Isla’s algorithm, which diffused when

the search target was not observed to account for possible movements of the target in unseen

space. In that formulation, previously visited areas could have their probabilities increase

from zero when outside of the searcher’s field of view, to account for the possibility that the

target moved back into those areas. In our case, however, the ‘targets’ (unexplored rooms)

are fixed.

Pseudocode for maintenance of the occupancy map with diffusion of probabilities is

located in Algorithm 1. Note that the occupancy map cell probabilities are each initialized
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to the same fractional value such that their sum equals to one.

One difficulty with diffusion is that it affects all cells on the map. With a small map size

(as in NetHack) and finely tuned parameters, this ‘global’ type of diffusion is not an issue,

but difficulties could start to crop up otherwise. For example, in a large map, although a

player in the middle can choose to move in any direction, diffusion will still affect all cells,

even those that may be quite distant from the player’s current position. This effect seems

misguided here: if too much time is spent on one side of the map, then the other side may

end up having very low probabilities even if it has not yet been visited. In short, the spatial

and temporal order in which a map is explored can arbitrarily and perhaps negatively affect

probability values in the map. This issue does not pertain to NetHack maps due to their

size and so is left to future work. One corrective measure may be to consider a ‘local’ type

of diffusion, which only affects cells in the current area, or perhaps exchanging continuous

diffusion for some sort of one-off immediate probability update.

3.2.3.3 Planning

We now use the knowledge in this representation to select the most promising frontier to

visit, while (as previously stated) ignoring frontiers that lie in areas of low probability. To

do so, we need a global view of the areas of high utility in the map, in the form of collec-

tions of adjacent cells of high probability, or components. There are two basic parts to the

process: identifying these components and their associated frontiers, and then evaluating

them to find the most useful one. First we describe reasons for dealing with components

instead of frontiers directly.

At any given time, many frontiers can exist: unvisited doors in rooms, unvisited spots in

corridors, etc. Since we want to visit frontiers that have the highest probability of leading

to an unvisited room, the utility value of visiting a frontier should in some way correspond

to the amount of adjacent cells of high probability in the occupancy map. We call these

collections of frontier-adjacent cells components. Each component could have multiple

adjacent frontiers that are perhaps right next to each other, or that border disparate sides

of the component. To make computation easier and better elucidate differences in value

between frontiers, we first determine these general components, evaluate them (based on
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Algorithm 1 Diffusion in the occupancy map. (Run each time a new coordinate is visited.)
def visit_coordinate(coord)

Globals:
TOTAL_COORDS = 80 * 20 ▷ NetHack map size
occ_map = defaultdict(1/TOTAL_COORDS) ▷ initialize occ. map to default probs.
visited_coords = set()

Parameters:
diffusion_factor ∈ [0, 1] ▷ how much to emphasize neighbour probs. in diffusion

Algorithm:
1: prob_culled = 0
2: if coord /∈ visited_coords then
3: prob_culled += occ_map[coord]
4: occ_map[coord] = 0 ▷ set current cell to zero probability
5: visited_coords.add(coord)
6: if coord.in_room() then
7: for room_coord in get_current_room_coords() - coord do
8: prob_culled += occ_map[room_coord]
9: occ_map[room_coord] = 0 ▷ set all cells of current room to zero

10: visited_coords.add(room_coord)
11: if prob_culled > 0 then ▷ Only run diffusion when new coordinate visited.
12: for unvisited_coord in occ_map - visited_coords do ▷ Normalization of probs.
13: occ_map[unvisited_coord] = occ_map[unvisited_coord] / (1 - prob_culled)
14: cur_occ_map = occ_map.copy()
15: for coord in occ_map do ▷ Diffusion step.
16: neighbour_probs = get_neighbour_probs_for(coord, cur_occ_map)
17: occ_map[coord] = ((1 - diffusion_factor)*cur_occ_map[coord]) + (diffu-

sion_factor / len(neighbour_probs)) * sum(neighbour_probs)
18: for coord in visited_coords do ▷ Make sure all visited coords have prob. 0
19: occ_map[coord] = 0
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utility value and distance to player), then pick the frontier closest to the best component,

instead of dealing with frontiers directly.

Components are retrieved by running a depth-first search (DFS) on the occupancy map

that traverses any cell with a probability value above the threshold. To further increase

separation of components, we do not visit cells that have less than a certain number of

traversable neighbours, which helps to deal with narrow alleys of high probability cells

that could otherwise connect two disparate components.

Algorithm 2 Getting connected components using DFS.
def get_components(prob_threshold, frontiers)

Parameters:
min_neighbours ≥ 0 ▷ min. num. neighbours for cell to be traversed by DFS
min_room_size ≥ 0 ▷ required minimum component size

Algorithm:
1: components = ∅
2: for each cell in occupancy map do
3: if cell ≥ prob_threshold and cell /∈ any component then
4: component = dfs(cell, prob_threshold, min_neighbours) ▷ set of cells
5: if component.has_nearby_frontiers() and |component| ≥ min_room_size then
6: components.add(component)

return components

Some components are ignored due to small size or absence of neighbouring frontiers.

If a component is smaller than the minimum size of a NetHack room, it is impossible for

a room to be there. Likewise, if a component has no neighbouring frontiers, it cannot

contain a room since there is no access point (unless secret doors/corridors are enabled, as

discussed later). Pseudocode for finding the components in the occupancy map is shown in

Algorithm 2.

The visualization of a sample occupancy map in Figure 3.2 gives an idea of this process,

with three components highlighted using a criss-cross pattern in different colours. Each of

the three are cut off from the others because the neighbouring rooms have diffused towards

the edges of the map (and the border has diffused towards them). Meanwhile, the unmarked

component in the upper-right is ignored since it has no neighbouring frontiers.

30



3.2. Exploration algorithms

Algorithm 3 Choosing the best frontier, considering component distance and utility.
def get_best_frontier(frontiers, components, prob_threshold, player)

Parameters:
distance_multiplier ∈ [0, 1] ▷ importance of distance in component evaluation

Algorithm:
1: max_component_val = 0
2: best_frontier = ∅
3: for component in components do ▷ find the best component
4: min_dist = +∞

5: frontier_for_component = ∅
6: sum_dists = 0 ▷ for distance normalization, line 16
7: for frontier in frontiers do ▷ get the best frontier for this component
8: closest_cell = component.get_closest_cell_to(frontier)
9: frontier_distance = dist_astar(player, frontier) + dist_mh(frontier, closest_cell)

10: sum_dists += frontier_distance
11: if frontier_distance ≤ min_dist then
12: min_dist = frontier_distance
13: frontier_for_component = frontier
14: ▷ get value of this component, factoring in utility & distance
15: comp_utility = component.sum_probs() / sum(c.sum_probs() for c : components)
16: norm_comp_distance = min_dist / sum_dists

▷ the [0, 1] normalization of utility is omitted for space purposes.
17: component_val = comp_utility + distance_multiplier * (1 - norm_comp_distance)
18: if component_val ≥ max_component_val then
19: max_component_val = component_val
20: best_frontier = frontier_for_component

return best_frontier

The list of remaining components are then passed through an evaluation function to

determine which best maximizes a combination of utility and distance values. Utility is

calculated by summing the probabilities of all cells in the component. The sum is then

normalized by dividing by the sum of all probabilities in the map. To determine distance

to player, the component is first matched to the closest frontier on the open frontiers list,

by calculating the Manhattan distance from each frontier to the closest cell in the com-

ponent. Distance from component to player is then calculated as: d (frontier,player) +
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d (frontier,closest_component_cell) with the first half calculated using A*, and the second

half using Manhattan distance (since that part of the path goes through unknown space).

This distance is then normalized by dividing by the sum of the distances for all frontiers

for the specific component under evaluation. With the normalized utility and distance val-

ues, we pick the component that maximizes norm_prob+α ∗ (1− norm_dist), where α

controls the balance of the two criteria. Pseudocode for component evaluation is shown in

Algorithm 3. Note that this will bias the algorithm to choose larger components, as they

will have higher summed probability than smaller components.

Algorithm 4 Main planning loop of the approach.
def plan_next_step()

Parameters:
threshold_val ∈ [0, 1] ▷ prob. threshold value
vary_threshold ∈ [True, False] ▷ whether to vary prob. threshold

Algorithm:
1: while true do
2: prob_threshold = calculate_threshold(threshold_val, vary_threshold)
3: frontiers = get_useful_frontiers(prob_threshold, radius)
4: components = get_components(prob_threshold, frontiers)
5: if frontiers = ∅ or components = ∅ then
6: stop
7: best_frontier = get_best_frontier(frontiers, components, prob_threshold, player)
8: player.move_to(best_frontier) ▷ send command to NetHack
9: visit_coordinate(best_frontier)

Once the best component is determined, the algorithm moves to the frontier matched

to that component. On arrival, it will learn new information about the game map, update

the occupancy map, and run diffusion. Components will then be re-evaluated and a new

frontier chosen. Exploration terminates when no interesting frontiers remain. Pseudocode

for the main planning loop of the exploration approach is presented in Algorithm 4.
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3.3 Algorithms with support for secret detection

We present below the adaptations necessary to enable searching for secret doors/corridors

for both the greedy and occupancy map algorithms. Secret doors/corridors are map coor-

dinates which cannot be reached by simple movement alone – they must be intentionally

searched for at additional cost. It is thus crucial to selectively pick where to search for them

to minimize time spent.

3.3.1 Greedy algorithm for secret rooms

A trivial adaptation can be made to the basic greedy algorithm in order to support searching

for secret areas. When entering a room, before proceeding to the next frontier, each wall

of the room is searched for secret doors for a certain number of turns. Searches are also

performed in dead-end corridors. If a secret door/corridor is discovered, it is added to the

frontier list as usual. Exploration ends when no frontiers or search targets remain.

For efficiency, searching for secret doors in a room is done by first choosing the un-

searched wall closest to the player, then moving to a spot adjacent to the wall that also

touches the most walls still needing to be searched (since searching can be performed di-

agonally).

Note that this approach is not capable of finding all secret corridors in a level, since they

may (rarely) appear in regular (not dead-end) corridors. However, searching all corridors

would be too strenuous to handle this rare occurrence. The below occupancy map approach

also ignores these rare secret corridors.

3.3.2 Occupancy map algorithm for secret rooms

The occupancy map algorithm has a natural extension to support the discovery of secret

door and corridor spots. In the original case, components of high probability in the occu-

pancy map with no neighbouring frontiers would be ignored, but here, these components

are precisely those that we would like to investigate for potential hidden rooms. Below we

detail the adjustments necessary for this extension.

33



3.3. Algorithms with support for secret detection

The first modification relates to the component evaluation function. Since these ‘hid-

den’ components have by definition no bordering frontiers, the distance from player to

frontier and frontier to component used in the evaluation must be adjusted. Instead of using

a frontier to calculate distance, we will choose a particular room wall or dead-end corridor

adjacent to the hidden component, and calculate distance using that.

The selection of such a room wall or dead-end corridor for a hidden component requires

its own evaluation function. This function will likewise consider both utility and distance.

Utility is given by the number of searches already performed at that spot. Distance is

taken as the length from the spot to the player plus the length from the spot to the closest

component cell. Distance to player is calculated using A*, and distance to closest cell by

Manhattan distance. Walls whose distance from the component exceed a certain maximum

will be ignored. Both distance and search count are normalized, the former by dividing by

the sum of distances for all walls, and the latter by dividing by the sum of search counts for

all walls. We then pick the spot that minimizes norm_count+σ ∗ norm_dist, where σ is

the parameter that controls the balance of the two criteria. The value is minimized in order

to penalize larger distance and higher search counts.

The selected wall/corridor spot is used in place of a frontier in component evaluation

which proceeds as described earlier. If, after evaluation, a hidden component is selected,

then we will move to the closest traversable spot adjacent to the component’s associated

wall/corridor spot. In case of ties in closest distance, the spot adjacent to the most walls will

be chosen to break the tie, since searches performed at a position will search all adjacent

spots (including diagonally).

When the player reaches the search location, the algorithm will use the search action

for a certain number of turns (a parameterized value), before re-evaluating all components

and potentially choosing a new search target or frontier to visit. If a secret door or corridor

spot is discovered while searching, it is added to the open frontier list and its probability in

the occupancy map is reset to the default value. Diffusion is then run throughout the map

since new information has been revealed.

It is possible for a hidden component to not contain a secret area. Thus, if a wall or

dead-end corridor remains unchanged after a certain number of searches (a parameterized

value), it will no longer be considered as a viable search target.
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Exploration terminates when no components are left, or only hidden components re-

main and none have viable search targets.

Figure 3.3 presents a visualization of a sample occupancy map with secret doors/cor-

ridors enabled and corresponding NetHack map. The component on the left side (marked

with a grid pattern) has no neighbouring frontiers and is thus considered a hidden compo-

nent; nearby walls that will be considered for searching during evaluation are marked with

blue squares. In this experiment, a low minimum wall distance was used, preventing walls

in the lower room from being selected for evaluation.

3.4 Results

Results will be shown below for the greedy and occupancy map algorithms as a function

of the exhaustive nature of their searching, followed by results for the algorithms that can

search for secret areas. We will look first at the metrics to be used for comparison of the

algorithms.

3.4.1 Exploration metrics

To evaluate the presented exploration strategies, we use as metrics the average number of

actions per game (which we seek to minimize) as well as average percentage of rooms

explored, taken over a number of test runs on randomized NetHack maps. As will be seen

below, the presented algorithms tend to do quite well on these metrics. Thus, in order to get

a more fine-grained view of map exploration which penalizes partial exploration, we also

use a third metric which we call the ‘exhaustive exploration’ metric. This metric represents

the average percentage of runs that explored all rooms on a map (counting as zero runs

that failed to find one or more rooms). We do not use amount of food collected as a metric

since in these maps food is uniformly randomly distributed amongst rooms, and so is highly

correlated with the percentage of rooms explored.

For algorithms that support detection of secret areas, two further metrics are used: the

average percentage of secret doors and corridors found, and the average percentage of

‘secret rooms’ found. Neither of these metrics are ideal, however, and it is important to

35



3.4. Results

Figure 3.3 Visualization of a sample occupancy map (bottom) and corresponding NetHack map
(top) with secret doors/corridors enabled. Hidden components are identified us-
ing a grid pattern while regular components use a criss-cross pattern. Highlighted
squares near the hidden component represent the walls that satisfy the distance
criteria.

understand limitations in evaluating secret room discovery.

The average percentage of secret doors/corridors found is problematic since it does not

correlate well with actual benefit – only a handful of secret spots will lead to undiscovered

rooms and so be worth searching for. Further, it is biased towards the greedy algorithm,
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since that algorithm will search all walls, and so have a higher chance to discover more

secret doors than the occupancy map algorithm, which will only search areas selected by

its evaluation function.

The average percentage of ‘secret rooms’ found is also problematic, due to their am-

biguous definition in the NetHack context. One possible way to define secret rooms here is

to classify them as any room not directly reachable from the player’s initial position in the

level. In this case, the metric would be too dependent on the individual level configuration:

a map could exist such that the player actually starts in a ‘secret’ room, separated from the

rest of the map by a hidden door, and the algorithm would only have to find that spot to get

a full score for this metric.

Further, while almost all maps tend to contain secret doors or corridors, only approxi-

mately half of all maps contain secret rooms as defined above (in the other half, any secret

doors/corridors that do exist lead nowhere useful). This discrepancy also skews the secret

room metric since maps containing no secret rooms will still get a full score using that

metric.

3.4.2 Exhaustive approaches

Figure 3.4 presents results for the exhaustive exploration approaches (those that always

explore all rooms on a map). Each result is an average over 200 runs on different randomly-

generated NetHack maps. The greedy algorithm comes in at around 324 average actions

per game, while the average for the fastest occupancy map model (with parameters that

gave complete exploration on 99.5% of all runs) is 292 actions.

The greedy algorithm by nature explores all corridors, while the occupancy map algo-

rithm limits exploration to areas likely to contain new rooms. The greedy algorithm is also

a bit more reliable for complete room discovery than the occupancy map algorithm: we

cited in the figure the occupancy map model that discovered all rooms in 99.5% of runs,

meaning a small number of runs failed to discover all rooms on the map (missing one or

two rooms in those cases).

In the same figure we present the result for the approximately optimal solution, which

visits all rooms in 122 actions on average. This approach can only be applied to a fully-
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Figure 3.4 Average number of actions taken by the approximately optimal solution, greedy al-
gorithm, and occupancy map algorithm for exhaustive room exploration with best
performing parameters. The average over 200 runs on different randomly-generated
NetHack maps is taken. Error bars (standard deviation over all runs) are presented
in red.

known map and so does not lend itself to exploration, but is instructive as a lower-bound.

The large discrepancy between this result and the other two algorithms is because this

algorithm knows the room positions; the true exploration approaches can make mistakes in

guessing.

Furthermore, the approximately optimal method knows to stop exploring when it has

reached the final room. Other methods however may continue exploring unnecessary fron-

tiers: the greedy approach will visit all frontiers and the occupancy map approach will only

stop when confident that remaining frontiers are in areas of low utility. Figure 3.5 shows the

number of actions taken by each approach on average until all rooms have been explored.

The difference between these numbers and those in Figure 3.4 show how many actions on

average are wasted by exploring useless frontiers near the end of each run: 58 actions for

the greedy algorithm and 43 for the occupancy map.

3.4.3 Non-exhaustive approaches

Exhaustive approaches are desirable in certain circumstances, but it is often acceptable to

occasionally leave one or two rooms on a map unexplored, especially when there is a cost to

movement. Figure 3.6 gives the results for the best-performing non-exhaustive occupancy

map models in terms of actions taken versus percentage of rooms explored. Each model
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Figure 3.5 Average number of actions taken until all rooms are explored, by the approximately
optimal solution, greedy algorithm, and occupancy map algorithm for exhaustive
room exploration with best performing parameters. The average over 200 runs on
different randomly-generated NetHack maps is taken. Error bars (standard deviation
over all runs) are presented in red.

(represented by blue dots) represents an average over 200 runs using a unique combination

of model parameters. The models shown lie on the upper-left curve of all models obtained

by performing a grid search over the parameter space.

As seen in the figure, there is a mostly linear progression in terms of the two met-

rics. The relationship between the ‘exhaustive exploration’ metric and total percentage of

explored rooms is also consistent, with both linearly increasing.

The figure shows that by sacrificing at most 10% of room discovery on average, the

average number of actions taken can be decreased to 200, compared to the 292 average

actions of the exhaustive (99.5%) approach or 324 actions of the greedy algorithm.

In general, the many parameters offer a fine-grained sweep of differences in the tradeoff

between actions taken and amount of map explored. Figure 3.7 shows results for all 6,763

models, one model for each different combination of parameters.

3.4.3.1 Occupancy map parameter analysis

With such a large amount of parameters for the occupancy map algorithm, the question

naturally arises as to which parameters really influence the results, and which can be for

the most part left to default values. Therefore, in order to determine the importance of these

parameters, a linear regression was performed. Parameter coefficients for average actions
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Figure 3.6 Occupancy map models with parameters that best minimize average actions per
game and maximize percentage of rooms explored. Each blue dot represents the
average over 200 runs using a different combination of model parameters. The blue
dots show the result under the ‘exhaustive exploration’ metric and the corresponding
black squares show the total percentage of rooms explored.
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Figure 3.7 Occupancy map models, with each marker representing the average over 200 runs
using a different combination of model parameters. Black squares (left) show total
percentage of map explored while blue dots (right) show number of runs where all
rooms were explored (‘exhaustive exploration’ metric).
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and percentage of rooms explored under the ‘exhaustive exploration’ metric are shown in

Figure 3.9. The specific ranges of values used are shown in Figure 3.8. R-squared values

for the regression were 0.742/0.693 (for average actions and room exploration) on test data.

Running a random forest regressor on the same data gave the same general importances for

each parameter with more confident r-squared values of 0.993/0.993, but those importances

are not presented here due to lack of indication of the correlation direction.

Parameter Range

Diffusion factor 0, 0.25, 0.5, 0.75, 1

Distance importance 0, 0.25, 0.5, 0.75, 1
Border diffusion factor 0, 0.25, 0.5, 0.75, 1
Minimum room size (3), 7
DFS min. neighbours 0, 4, 8

Prob. threshold 0, 0.15, 0.35, 0.5
Whether to vary threshold False, True
Frontier radius 0, (1, 2)

Figure 3.8 Range of occupancy map algorithm parameters used in the grid search. Values
in parentheses indicate these were not included in the complete grid search, since
they did not seem to have an impact on results.

Diffusion factor

Distance importance

Border diffusion factor

Minimum room size

DFS min. neighbours

Prob. threshold

Whether to vary threshold

Frontier radius

-100 -50 0 50 100

Coefficient for average number of actions Coefficient for all room exploration percentage

Figure 3.9 Linear regression coefficients for average number of actions and percentage of
rooms explored with the occupancy map parameters as independent variables.
Train/test data split is 70%/30% and dataset size is 6,763 (each datum being the
result for a different combination of parameters).
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The coefficients indicate that parameters directly associated with probabilities in the

occupancy map are most influential on average actions and percentage of rooms explored.

These parameters include the diffusion factor (how much to diffuse to neighbours), border

diffusion factor (how much to diffuse from outer borders), probability threshold (at what

probability to ignore frontiers, etc.), and whether to vary the threshold as more of the map

is explored. The border diffusion is probably important due to the small (80x20) map size;

on larger maps, it is less likely that this parameter would have such an impact.

Meanwhile, parameters that influence component size and choice, like distance factor

(importance of distance in component evaluation) and minimum number of neighbours for

a cell to be visited by DFS (which separates components connected by small alleys) did not

seem to have a pronounced effect on the metric values. This finding may suggest that the

location of frontiers, and ignoring ones that lie in areas of low probability, has more of an

impact than the separation of components.

The specific parameter values that led to the fastest performing exhaustive exploration

model (presented in Figure 3.4) were as follows: diffusion factor of 1, distance importance

of 0.75, border diffusion of 0.75, minimum room size of 7, DFS min. neighbours of 4,

probability threshold of 0.15, vary threshold set to false, and frontier radius of 0. The

parameters for the fastest model at 80% non-exhaustive exploration (the full map being

explored about 30% of the time) using 167 actions on average (as shown in Figure 3.6)

were: diffusion factor of 0.75, distance importance of 0.25, border diffusion of 0.5 (smaller

values diffuse more), minimum room size of 7, DFS min. neighbours of 8, probability

threshold of 0.5, vary threshold set to false, and frontier radius of 0.

One parameter, the minimum component size, had very little effect on metric results.

This parameter was introduced to decrease computation time. Small components would

otherwise be eventually eliminated by diffusion anyway, and would be unlikely to be se-

lected by the evaluation function due to their low summed probability, so the low effective-

ness of this parameter is not surprising.
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Figure 3.10 Number of actions taken by the greedy algorithm with support for secret door/-
corridor detection with varying values for number of searches per wall parameter
(‘nspw’). The average percentage of secret doors/corridors found is represented
by stars and average percentage of secret rooms represented by diamonds.

3.4.4 Approaches for secret rooms

Below we present and discuss results for the greedy and occupancy map algorithms with

adaptations for searching for secret doors and corridors.

3.4.4.1 Greedy algorithm for secret rooms

Figure 3.10 shows the results for the greedy algorithm with support for secret detection in

terms of average actions versus exploration. Different colours represent the different set-

tings for the number of searches per wall parameter (the number of times the algorithm will

search a particular wall/corridor before moving on). Both the average percentage of secret

rooms found and average percentage of secret doors and corridors found are displayed.

As expected, both metrics increase as the number of searches per wall increases, plateau-

ing at around 95% discovery of both secret rooms and secret doors/corridors at around 2250

average actions per game. As mentioned earlier, the algorithm will only search for secret
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corridors in dead-ends, so it is missing about 5% of hidden spots probably because of the

secret corridors occurring (rarely) in other locations.

Another observation is that when the number of searches per wall is set to 0, the al-

gorithm is reduced to the regular greedy algorithm, with no secret doors/corridors being

found (since there no searching is performed). The approximately 50% score for the secret

rooms metric is due to the fact that, in that percentage of runs, there were no secret rooms

at all, thus giving 100% exploration as mentioned in the metrics discussion.

3.4.4.2 Occupancy maps for secret rooms

Figure 3.11 gives the results for the best-performing secret-detecting occupancy map mod-

els in terms of best time versus highest secret room exploration. Each model represents

an average over 200 runs using a unique combination of model parameters. The models

shown lie on the upper-left curve of all models obtained by performing a grid search over

the parameter space.

Results here are much better than the greedy algorithm, with approximately 90% secret

room exploration at around 500 actions. The reason for the discrepancy between this result

and the greedy algorithm (over 1600 actions for 90%) is that the occupancy map model

has better, global knowledge of the map and can target particular walls for searching, in

contrast to the greedy algorithm which searches every wall.

This global knowledge also explains the much lower percentage of secret doors/corri-

dors discovered using this algorithm (20% for the model exploring 90% of secret rooms)

compared to the greedy algorithm (80% for the model exploring 90%). This result is ex-

pected since exploration of secret doors/corridors only weakly correlates with secret room

exploration (only a few secret doors/corridors will actually lead to otherwise inaccessible

rooms).

Importances of the parameters for the secret-detecting occupancy map algorithm are

shown in Figure 3.13. These importances were calculated by running a random forest

regressor on the model results. R-squared value for the average actions coefficient was

0.864 on the test data, while for the secret room exploration coefficient, the value was much

lower at 0.334, suggesting that some parameters are not linearly independent in relation to
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Figure 3.11 Occupancy map models with support for detecting secret doors/corridors, with
parameters that best minimize average actions per game and maximize explo-
ration of secret rooms. Green diamonds represent the percentage of secret rooms
explored, while the corresponding red stars represent the percentage of secret
doors/corridors explored. Also shown are the regular percentages of rooms ex-
plored, represented by blue circles and black squares as explained in the caption
for Figure 3.6.

that variable.

The specific ranges of parameter values used in the grid search are shown in Figure 3.12.

In order to save computation time, some parameter ranges are narrowed and some values

fixed here to their corresponding best-performing values from the regular occupancy map

algorithm. Figure 3.13 does not show importances for those parameters that have fixed

values.

The importances show that the three diffusion-related parameters (diffusion factor, bor-

der diffusion and probability threshold) continue to have a large impact on the average

actions and secret room exploration metrics. In addition, other factors that did not have

any importance in the earlier occupancy map algorithm have a significant impact here,

particularly the minimum neighbours for DFS. This parameter affects the separation of
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3.4. Results

Parameter Range

Diffusion factor 0.25, 0.375, 0.5

Distance importance 0, 1, 2
Border diffusion factor 0.2, 0.6, 1
Minimum room size 5

DFS min. neighbours 2, 4, 6

Prob. threshold 0.2, 0.25, 0.3
Whether to vary threshold False
Frontier radius 0, 2
Wall distance importance 0, 1, 2
Max. searches per wall 7

Minimum wall distance 5, 10, 15
Num. actions per search 7

Figure 3.12 Range of secret-detecting occupancy map algorithm parameters used in the grid
search. Some values tested for partial ranges are omitted.

Diffusion factor

Distance importance

Border diffusion factor

DFS min. neighbours

Prob. threshold

Frontier radius

Wall distance factor

Max. wall distance

0 0.1 0.2 0.3

Coefficient for average number of actions Coefficient for 'secret room' exploration percentage

Figure 3.13 Random forest regression coefficients for average number of actions and percent-
age of secret rooms explored with the secret-detecting occupancy map parame-
ters as independent variables. Train/test data split is 70%/30% and dataset size is
4,470 (each datum being the result for a different combination of parameters).
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components, suggesting that the use of components for this algorithm matters more than in

the earlier case.

Parameters exclusive to this algorithm also had somewhat of an effect on the dependent

variables, including the wall distance factor (importance of distance in the choice of walls to

search for a hidden component) and maximum wall distance (maximum distance between

a wall and a hidden component before it is removed from consideration for searching).

3.5 Discussion

In this chapter we presented an algorithm to efficiently explore a NetHack map and con-

trasted it with a simpler, greedy approach. The algorithm involves the use of occupancy

maps as well as the concept of diffusion from Damián Isla’s work. To determine the best

frontier to visit, the occupancy map is split into components of high probability and the

most promising component to visit next is chosen according to utility and distance. We

also detailed adaptations to this and to the greedy algorithm in order to support searching

for secret areas, which cannot be found by traditional exploration alone. Finally, we pre-

sented results for the algorithms, and looked into the importances of the various parameters

of the occupancy map algorithm which allow for different tradeoffs between amount of

map explored and exploration time. This algorithm will be useful in contexts where time

is a resource that must be carefully managed, like in NetHack and similar roguelikes. We

now turn to another aspect of NetHack: combat.
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Chapter 4

Learning Combat Strategies

In this section we describe our NetHack combat learning approach with custom re-

wards, states and actions. We also present a handful of simple baseline strategies and com-

pare them with our approach. Combat is modeled in a one-on-one player-versus-monster

arena setting, with a variety of equipment and items available to the player. This generic

setting can naturally be extended to other roguelikes.

A learning approach to combat can be contrasted with existing rules-based approaches,

which use hard-coded responses and strategies for each monster (as mentioned in Chap-

ter 6). Learning these rules automatically alleviates the tedium and difficulty in brain-

storming all the possibilities for varied and complex situations; it is often not obvious how

to write an optimal strategy by hand without doing significant testing throughout the pro-

cess.

We present and discuss results for our deep Q-learning and baseline approaches for

three different experiments, each increasing in complexity. First, we describe the combat

environment.

4.1 NetHack environment

A modified version of the base NetHack game is used to test our combat algorithms. Me-

chanics that might alter experiment results were removed, including starvation, weight lim-

itations, and item identification (all items are identified on pickup). We leave these issues
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4.1. NetHack environment

for future work.

The default NetHack map system is also altered. Instead of the default, randomly-

generated maps, we use an enclosed 8x16 room for the combat environment, as seen in

Figure 4.1. In each combat episode, the player is placed in the middle of the room, with

a selected monster placed in a random position. In some episodes, the randomized player-

monster distance will allow the player to have time to get ready before encountering the

monster (e.g., to equip weapons and/or armor), and also give the player a few turns to

perform ranged attacks before the monster enters melee range, whereas in others, the player

must make quicker decisions about equipment.

An episode terminates on player or monster death, or after 200 actions (whichever oc-

curs first). This large maximum number of actions is excessive, but was shown to perform

better than a lower number in experiments.

Figure 4.1 The room used for the learning environment. The player (‘@’ character) starts in the
middle of the room, and the monster (‘a’ character in this case) starts in a random
position. The bottom two lines describe the player’s current attributes and statistics.

NetHack also asks the player to choose a particular role or character class at the start of

a game. Role determines the initial attributes of the player (e.g., strength or intelligence),
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as well as some special initial properties. In our experiments, we fix the role to ‘barbarian’

(out of the 13 available), chosen for its ability to handle both melee and ranged weapons

reasonably well. Casting spells and reading spellbooks are omitted in our experiments so

the barbarian’s low intelligence is not a contraindication.

4.2 Learning algorithms

We use deep Q-learning for our learning algorithm with custom rewards, states and ac-

tions, as detailed below. First, we present for contrast two trivial baseline algorithms that

approximate a beginner player’s actions.

4.2.1 Baseline strategies

To compare our deep Q-learning approach, we present two simple combat strategies for

the NetHack environment that match up with our combat experiments, detailed later in

section 4.3.

The first baseline is a precisely-tuned strategy for our test combat environment, where

the player has a fixed inventory and faces against one particular monster. The baseline will

use items and attack in an optimal manner, in order to compare against the performance of

the DQL model.

The second baseline has access to a wide variety of items, including melee and ranged

weapons, potions, scrolls, wands, rings, and some armor. At the beginning of each combat

episode, it equips a random weapon from its inventory, then moves towards the monster

and attacks when in range. If a ranged weapon is chosen, the agent will line up with the

monster and then fire projectiles until supply is exhausted. If the monster is invisible, a

random move in any direction will be attempted; moving into a monster is considered an

attack, so randomly moving has a chance to attack an invisible monster.

Further, 25% of the time, instead of approaching/attacking the monster, it will attempt

to use a random item from its inventory: a scroll, potion, wand or ring. This behaviour

could be said to simplistically replicate that of a new player who will occasionally use a

random item but spend the majority of their time on movement. There is some risk for this
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baseline since some items can be harmful if used improperly.

4.2.2 Learning approach

A dueling double deep Q-network [WSH+16] with experience replay is used for the learn-

ing agent. A tabular algorithm may be successful in this environment, but a deep network

allows for generalizability and far more compact representation. Experimentation with

tabular forms and linear function approximation, such as tile coding, is left to future work.

Below we discuss the main components of the MDP formulation for the learning model: re-

wards, states, and actions. Note that these three components contain many design choices,

based on familiarity with NetHack and preliminary experimentation, but other choices are

of course possible.

4.2.2.1 Rewards

Rewards, the most trivial of the three components, are given as follows: a small negative

reward at each timestep to inspire shorter combat, while at episode end, a reward of 10 on

monster death and -1 on player death.

4.2.2.2 States

Here we present the formulation of an abstract state space for NetHack combat. In modern

reinforcement learning approaches, the state space for video games is typically generically

defined over the raw pixels from the game screen, and actions defined as the basic controller

inputs, such as was done in the Atari game experiments [MKS+13]. This approach is very

easy to set up and can be ported to diverse environments with ease, but depends on a fairly

simple notion of targeting and combat strategy.

In our approach we provide a more high-level representation of state. Doing so al-

lows us to more easily address effects with long temporal dependencies and better handle

the diversity of game elements and command options available in NetHack, i.e., to focus

more directly on learning combat strategy instead of the more general context in which we

would also need to learn the basics of pathing, maze navigation, and meanings of inven-

tory and character status, all of which already have well-known and efficient algorithmic
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solutions. There are also challenges associated with how information about game state is

represented on the NetHack screen that would arise from using raw pixels as state. For

example, different monsters can be depicted by the same symbol onscreen but range dis-

parately in difficulty level. Furthermore, certain state information is not shown at all on the

game screen – these ‘intrinsic’ properties are discussed further below.

Game state information is parsed from the normal game screen visible to a player. We

encode as basic numerical information:

• the player’s experience level, dungeon level, health, power, strength, dexterity, con-

stitution, intelligence, wisdom, charisma and armor class, all normalized in the 0..1

range, and

• the normalized 0..1 distance between the player and monster,

along with information in (binary) vector form:

• the player’s current status effects (confused, stunned, blinded, hallucinating, etc.),

• the player’s current inventory with each ⟨item, enchantment, BUC-status, condition⟩
item tuple separately represented, and with normalized 0..1 values for projectile

quantity and wand charges, and

• what the player is currently wielding and wearing.

Additionally, we include one-hot encoded vectors to represent:

• the current monster being fought (with a special category for invisible or hallucina-

tory monsters),

• the monster’s class (according to its glyph),

• the player’s character/role type (e.g., barbarian), and

• the player’s alignment,

and finally, simple booleans for each of the following:
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• if the player has lost health this game,

• if the player is suffering from lycanthropy,

• if the player is currently invisible,

• if the player is lined up with the monster,

• if the monster has turned invisible,

• if there are projectiles currently on the ground and if the player is standing on them,

and

• if both the player and monster have recently moved or approached the other.

More details on each piece of state information can be found in Appendix A.

Note that the actual game map is not included in the state. This choice was made

to significantly slim down the state space and decrease learning times. Since combat is

one-on-one, and we already include monster-player distance and other combat-relevant

information abstractly, it is unlikely that having the detailed game map would significantly

improve success rate. In a multi-combat scenario, however, adding the game map to the

state in conjunction with convolutional neural networks and longer training times could

potentially lead to more clever movement tactics.

One category of information that this state space does not capture is that of character

‘intrinsics.’ An intrinsic is a character trait such as speed, stealth, or resistance to an ele-

ment. Some intrinsics are gained temporarily from item use; for example, drinking a potion

of speed will give the player the speed intrinsic. Others are obtained while wearing a piece

of equipment. Intrinsics are not displayed on the NetHack screen and it is up to the player

to remember what intrinsics they have been granted (although there are a handful of rare

items that list current intrinsics). This recall issue is a challenge for the learning algorithm

since, after drinking a potion of speed, for example, it will immediately forget that it has

done so and thus will not recognize in state its new speed, potentially leading to artificially

inflated action-values for the regular, non-speedy state. To get around this issue, we omit

temporary intrinsic-granting items from our action set and leave a fix for future work.
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One way to resolve this issue would be to maintain in state a binary vector of all items

used or consumed during the current episode, or a vector of the status of all intrinsics the

player currently has. However, as stated previously, some intrinsics wear off after a certain

period, such as obtaining speed from the potion of speed. The duration of this type of

intrinsic is randomized within a range that differs for each item, and so it is unclear when

to update the vector element to indicate that the intrinsic is no longer active. It could be

possible to hard-code these ranges for each such intrinsic-granting item, but that would

require injecting decidedly more game-specific knowledge into the agent.

4.2.2.3 Actions

We also use an abstracted set of actions. In recently popularized reinforcement learning

applications to games, the action set corresponds directly to controller inputs. In NetHack,

however, basic keyboard commands can map to different actions depending on game con-

text; keyboard characters used to access inventory items, for example, are determined by

the game based on the order in which the items are acquired, more or less randomizing

the key command associated with any item in each playthrough. Thus, we use abstractions

in order to allow the learning agent to select an appropriate item without the expense and

complexity of incorporating an entire game history into the learning process.

Our game controls are divided into basic primitives and actions mapped to inventory

items. For the item actions, the action to perform depends on the item type. If an equip-

pable item (i.e., weapon or armor) is selected as the action, then that item will be equipped

when taking that action. If the item is usable, it will be used when taking the action: scrolls

are read, wands zapped at the monster, and potions either quaffed or thrown at the mon-

ster (each represented separately). Further, each item is represented several times in the

action set, once for each combination of its possible properties (enchantment, condition,

and BUC status), since the decision to use an item strongly depends on these properties.

Enchantments are capped in the [-1, +1] range to reduce complexity.

Item actions are complemented by nine primitive actions related to basic movement or

other non-item strategies as follows. While the standard movement keys (‘WASD’) never

change, abstracted forms are still required here since the game map is not passed in.
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• Move one unit towards the monster.

• Move one unit to line up with the monster (to allow for projectiles/wands/potions to

be thrown), breaking ties in position by choosing the position closer to the monster.

• Move one unit to line up with the monster, breaking ties in position by choosing the

position farther from the monster.

• Attack the monster with the currently-equipped melee weapon.

• Unequip the current weapon (switch to bare hands).

• Move one unit towards the closest projectile on the ground.

• Pick up a projectile on the ground under the player.

• Move one unit in a random direction.

• Wait a turn.

4.2.2.4 Dealing with impossible actions

Many of the actions above notably have prerequisites and, at any one time, the vast ma-

jority of actions will be missing one of them. For example, a player can only use the item

actions corresponding to the items they currently possess, rendering the vast majority of

item actions impossible. The Q-learning algorithm must be made to handle this issue or the

agent would be very unlikely to learn anything in a reasonable amount of time. Below we

discuss the problem of impossible actions in general, followed by some proposed solutions.

The issue of invalid or impossible actions arises occasionally in reinforcement learning.

In the standard Gridworld environment, where an agent moves on a two-dimensional grid,

an example ‘invalid’ action is to try to move past the edge of the grid. Often, this action

is accepted and silently ignored by the environment, producing no change in state. Then,

with a discount factor below 1, or with negative rewards per timestep, the agent will learn

that this action simply wastes a turn. In other cases, an agent taking an invalid action will

immediately be given a large negative reward, without the action actually being passed on
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to the environment [Res14]. This immediate reward will let the agent learn faster about

which actions not to take. Sometimes an episode will terminate immediately on taking an

invalid action.

In the majority of these cases, an invalid action can still be passed to the environment

since there is still a means of executing the action. For example, a physical robot has the

means to walk into a wall, just like a human player can try to walk into a wall. However,

when dealing with more abstract actions such as ‘move towards monster’, certain precon-

ditions must be satisfied (i.e., the monster must exist) or else the action has no meaning and

cannot be taken. In the NetHack context in particular, there are three types of impossible

actions: those that can be taken but do not result in the intended consequence (e.g., trying to

pick up a projectile when none exists, which wastes a turn), those that can be taken but are

rejected by NetHack with an error message without wasting a turn (e.g., trying to unequip a

weapon when none is equipped), and those, mentioned earlier, that have no associated key

to press (e.g., trying to use an item one does not possess), making them functionally impos-

sible. In this latter circumstance the action cannot be passed to the environment and must

be caught and dealt with beforehand. Even the middle case is disastrous, since it breaks the

assumption that one action equals one turn, thus negatively affecting the action-values.

It might seem logical here to use the strategy of giving a negative reward for impossible

actions. This strategy would make the agent learn to not take these actions. In the case

of the NetHack environment however, which has a large action set with often very few

possible actions for each state, a large amount of learning time would be consumed by

taking invalid actions and receiving negative rewards. Further, when using an experience

replay buffer (e.g., with a deep Q-network), a significant part of the buffer would be devoted

simply to these experiences, necessitating significantly longer training times and buffer

sizes to learn anything.

Instead, we alter the regular Q-learning algorithm to avoid the problem of invalid ac-

tions. To begin, we make three assumptions. First, we assume that the possibility of an

action in a certain state (whether it can be taken or not in that state) can be derived solely

from the state itself. For example, in order to take the action ‘equip sword’ in a state s, s

must include information as to whether the agent currently possesses a sword, as well as

any other preconditions necessary to equip the sword. Second, we assume that a prereq-
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uisite function v_a(s) exists for every action and returns a boolean indicating whether the

action can be taken in that state or not. With this set of functions, we can at all times narrow

the action set to that of the possible actions. Thirdly, we assume that it is never possible to

end up in a state with no possible actions.

With these assumptions, we then make the following two changes. First, in whatever

behaviour policy used (e.g., ε-greedy), only possible actions can be selected. In the case of

ε-greedy, if a random action is to be selected, invalid actions are given a probability of 0;

if a greedy action is to be selected, the arg-max is taken over action-values corresponding

only to possible actions. Second, a change is made to the action-value update: the max

over the action-values for the next state (maxa Q(st+1,a)) is taken over the set of possible

actions instead of the complete action set. These two modifications eliminate the problem

of impossible actions. If using experience replay, the (state, action, reward, next state) tuple

must also be augmented by the list of possible actions, so that the action-values of batch

updates can be similarly affected.

The necessity for the second change, which affects the action-value update, may not be

immediately obvious. If all action-values are by default initialized to 0, then in the tabular

case, taking the max over the whole action set would likely not result in any deleterious

effect, since (depending on the reward structure of the environment) the action-values for

impossible actions, which are always 0 (since the actions are never taken due to the policy

restriction) will likely never exceed the action-values of possible actions. In the function

approximation case, however, although an invalid action may never be taken, it could be

grouped together with other states and so have an incorrectly inflated value which could

end up dominating the other action-values in the max of the update equation.

The formulation of an action validity function is similar to the ‘initiation set’ of the op-

tions framework [SPS99]. An option is a structure to enable temporally-extended actions;

each option has a policy (what to do when following the option); a termination condition

(in which state the option should be stopped); and an initiation set I. An option can only

be taken in a state s if s ∈ I. Since options are a generalization of primitive actions, we

can think of the action ‘equip sword’ as an option where the initiation set for the option o

corresponds to the output of the action validity function v_o.

The concept of limiting the action space based on information contained in state has
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Figure 4.2 Framework for the combat learning experiments, showing interplay between the Net-
Hack base game, the OpenAI gym environment that parses game screen informa-
tion for the hand-crafted state and action set, and the Keras-RL deep Q-learning
(DQL) agent.

also been referred to as a ‘state-conditional action space.’ Resende brings up this concept

and discusses its disadvantages, namely that such a validity function must be specified, thus

requiring more implementation and domain knowledge than other approaches [Res14].

4.3 Experiments conducted

Three general experiments were conducted with the player in arena-style, one-on-one com-

bat against a selection of monsters. The first two experiments find the player battling one

monster; one with a very limited selection of items as a verification of the general ap-

proach, and the second with a larger selection to demonstrate the ability of the model to

choose items well. The third experiment has the same large selection as the latter but is

trained on a larger number of monsters. Below we discuss the particularities of the exper-

iments, including monster and item choice. We finish the section by detailing the model

hyperparameters.

Each model will first be trained on the selected monsters, then tested on the same range.

In each episode, the player is given a randomized inventory (except for the first test exper-

iment), so no two episodes are likely to be the same. Further, randomness exists in attack

chance, damage, initial monster position, and some item effects outcomes.
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All experiments use the Keras-RL deep reinforcement learning library for deep Q-

learning algorithm implementation, which is built on top of the underlying neural network

framework Keras [C+15]. The Keras-RL DQL agent communicates with our learning en-

vironment, built under the OpenAI Gym framework [BCP+16]. This environment com-

municates via sockets with NetHack as described in section 2.1.3, receiving the raw game

screen and sending back the command to use. It parses information from the game screen

and creates the state and set of possible actions, then passes them to the DQL agent. The

flowchart for the environment is shown in Figure 4.2.

4.3.1 Fire ant test

The first experiment is designed to verify the learning approach on a simple use case. Here,

the player will face against one monster, the fire ant, and will be given certain items to help

defend against it.

The fire ant is a fearsome sight to an unprepared player. It has two damage-dealing

attacks that it deploys simultaneously to a player within range: a physical attack as well

as a fire attack. The fire attack, in addition to causing damage, also has a chance to set

items in the player’s inventory on fire, rendering less effective several types of armor and

disintegrating scrolls. Further, in this experiment dungeon level is set to 10, which slightly

increases the fire ant’s toughness vis-à-vis the player.

The player is given the following inventory to combat the fire ant: a dagger, tsurugi,

wand of cancellation, wand of locking, and wand of make invisible. The optimal strategy

would be to equip the tsurugi (which deals more damage than the dagger), line up with

the fire ant, zap the wand of cancellation at it (which disables its fire attack), and then

proceed to approach and attack the fire ant with the tsurugi. The other items are useless –

particularly the wand of make invisible, which if zapped at the monster, will surely lead to

a bad end.

The goal of this simple experiment is to verify that the DQL approach can find the

correct pathway to defeat the fire ant. The items are always fixed here with no randomness.

A baseline that follows the optimal strategy was also made to compare against the model.
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4.3.2 Lich test

In the second experiment, the player faces against the lich, a difficult monster that can

cast spells, including cursing items in the player’s inventory, rendering them ineffective, or

turning invisible, protecting them from some attacks. Here the player has access to a much

wider range of items than earlier. The set of items sampled for inventory is discussed more

in the next section, and the full list can be seen in Appendix B.

The goal of this experiment is twofold: to show that the DQL model will use items

correctly against a difficult monster, and to function as a sanity check for the next exper-

iment, which uses the same item sampling but is trained against not just one but several

monsters. That set of monsters includes the lich, so we would expect to see approximately

the same success rate against the lich for both this and the next experiment; a lower suc-

cess rate in the wider monster experiment may indicate inadequate training time or other

complications.

4.3.3 Representative model

The final experiment sees the player in combat against a monster chosen from a more

diverse selection – a slice of monsters from levels 14 to 17, with some exclusions – and

equipped with a larger set of items.

In particular, twelve monsters were selected from levels 14 to 17 for the player to face,

each having unique abilities and requiring diverse strategies to defeat. Some monsters

curse items in the player’s inventory or cause their weapon to deteriorate while others have

powerful melee attacks. A subset of monsters was chosen in place of the entire monster set

in order to lower the computation time needed to learn a correct model, although it is likely

that the agent would perform on average equally well on the entire set if trained on them,

give or take some additional state information that may be required for these cases.

The exclusions from the 14-17 level range are made up of unique monsters, non-

randomly-generated monsters, and shape-changing monsters. Unique or non-randomly-

generated monsters (10 in the range) appear only occasionally or in certain circumstances

(e.g., shopkeepers) and typically require very specialized strategies, making them a lower

priority for which to learn combat. Shape-changers (2 in the range) are excluded since

60



4.3. Experiments conducted

monster type is expected to stay constant in an episode.

Dungeon level for these experiments is set to 1. Dungeon level does not influence

monster level here, since we disable the influence it usually has over the latter.

In terms of inventory, the player is given a random sample of items to mimic the in-

ventory of a real player facing against a monster midway through the game. The sample

includes one melee weapon made of wood, one of iron, and one of silver; one ranged

weapon; and 10 pieces each of two different ammunition types for use with the ranged

weapon. It also includes three random potions, three random scrolls, three random wands,

five random rings, and four random pieces of dragon scale mail; in total, 18 items out of

a possible 102 from these categories. All items are generated as uncursed and without en-

chantment (+0). Items which require special input behaviour (e.g., wand of wishing which

requires a string input) are excluded, as well as unique ‘artifact’ items which are typically

over-powered. The full listing of possible items and explanations for omissions can be

found in Appendix B. Note that if the agent somehow comes across an item that was not

in their original inventory, or if an item in their inventory is modified (e.g., change in BUC

status or enchantment), the agent will still be able to recognize and use it (as long as it is

not one of the excluded items). In such case, the item will be represented by a different ac-

tion (as described in section 4.2.2.3) to enable the agent to distinguish between the changed

properties.

The relatively large sample of items is given to demonstrate the ability of the agent to

choose suitable items for each particular monster, in addition to giving the agent a chance

to win against the monster (since failure will probably result from having no items). Armor

in general was omitted from the experiment since it is more useful in a general sense for

combat and does not have much influence on strategies against particular monsters (the

quantity of armor one has equipped is in general better than the quality). To compensate

for the lack of armor, the agent is given a fixed armor class (a value related to quantity of

equipped armor) of -15 at the beginning of every episode in order to simulate a reasonable

amount of armor being equipped. Some armor, however, bestows additional beneficial

effects upon the player that can have an impact against certain monsters. To simulate

these effects, five random pieces of dragon scale mail (out of a possible 9) are given to the

player in each combat. Each piece of dragon scale mail, when equipped, gives the player
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a different benefit: green dragon scale mail gives resistance to poison, while the same of a

silver colour makes ranged or magical attacks bounce off the player and rebound upon the

hostile monster.

4.3.4 Model hyperparameters

The following hyperparameters are set before each experiment: player experience level,

total number of actions for training, and neural network architecture.

Player experience level determines the starting health of the player and their chance to

hit in combat (as well as other effects with no combat impact for our experiments). In our

experiments, player level is automatically set based on monster difficulty in order to keep

combat difficulty relatively constant. In the first experiment, the player level is set to three

less than the fire ant difficulty, to emphasize the importance of using the wand of cancel-

lation (which halves the damage output of the monster). For the two other experiments,

it is also set to three lower than the monster difficulty, since the fixed armor class given

increases survivability in general. In the end, these settings are somewhat arbitrary; other

parameterizations are of course possible.

The total number of actions for learning should correspond to the size of the state space

to be explored. For the fire ant case, the number is set to 40,000 actions or approximately

2,000-4,000 games, if each game lasts between 10-20 actions. The lich test is run over

200,000 actions. The full items case, which enables a much larger portion of the state

space to be visited, is trained over 2,000,000 actions.

All models use an epsilon-greedy behaviour policy with epsilon linearly annealed from

1 to 0 through the course of training (with a value of 0 used for evaluation). Experience

replay buffer size is 40,000 for the fire ant test, 200,000 for the lich test and 1,000,000 for

the third case. Discount factor is 0.9.

The architecture of the neural network is as follows: an input layer of size equal to state

length, followed by two dense layers, and an output layer of size equal to the number of

actions. In the fire ant case, the two dense layers have 32 and 16 units respectively, while

the lich test has layers of size 32/32, and the full items model size 64/32. Again, these

are somewhat arbitrary values, but are determined keeping in mind that more complex
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Success rate on fire ant test

Baseline model

DQL model

Success rate (%)
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73.2

62.8

Figure 4.3 Percentage of episodes in which the baseline and DQL models succeeded against
the fire ant, during testing over 500 episodes.

environments may require larger network sizes. Adam was used for the optimizer with a

learning rate of 10−6.

4.4 Results

We present results of the three models below: the two verification tests against the fire ant

and lich as well as the model encompassing more monsters.

4.4.1 Fire ant test

Results for the baseline and DQL models on the fire ant experiment are presented in Fig-

ure 4.3. Somewhat surprisingly, the DQL model outperforms the baseline by about 10%.

This result might be explained by the behaviour of the models when the monster spawns

very close to the player at episode start (i.e., within melee range). The baseline will equip

the tsurugi and zap the wand regardless of initial monster position, but the DQL model may

opt not to since getting an extra attack or two may be preferable to equipping/zapping.

To further verify the behaviour of the DQL model, we match to the trajectory of each

episode certain regular expressions corresponding to the optimal strategy for defeating the

fire ant. The number of occurrences of each expression are presented in Figure 4.4. In the

figure, we see that each episode ended with the ‘attack monster’ action, while no episode

contained the useless ‘random move’ action. Regarding weapon choice, we see that the

tsurugi, the more powerful weapon, was equipped in all 200 episodes, whereas the dagger
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Action sequence counts

/attack monster$/

/random move/
/dagger/

/tsurugi/

/attack monster.*tsurugi/

/wand of cancellation/
/wand of locking/

/wand of make invisible/

Number of episodes containing action sequence
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497
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Figure 4.4 Number of episodes that contain certain sequences of actions, during testing over
500 episodes of the fire ant DQL verification model. The $ character means the
action took place at the end of an episode while ‘.*’ is a wildcard that matches any
action(s) in between two others.

was equipped in none. Further, the tsurugi was always chosen to be equipped before the

player began attacking the monster. We also see that in the vast majority of episodes, the

wand of cancellation was used against the fire ant, whereas the useless wand of locking

and harmful wand of make invisible were used a negligible amount. These results confirm

that the DQL model can correctly learn a simple combat situation. It also demonstrates the

difficulty to write an optimal baseline strategy that covers all situations, even in a simplistic

situation.

4.4.2 Lich test

Figure 4.5 shows results for the baseline and DQL models on the lich experiment. Once

again, the DQL outperforms the baseline, in this case slightly more than the fire ant test

(17.25% difference versus 10.4%). Here the DQL model has the advantage of learning the

success rates induced by each item, whereas the baseline always chooses a random one to

use without considering possible outcomes.

The behaviour of the DQL model is further demonstrated in Figure 4.6, which lists the
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Success rate on lich test

Baseline model

DQL model

Success rate (%)

0 25 50 75 100

43.75

26.5

Figure 4.5 Percentage of episodes in which the baseline and DQL models succeeded against
the lich, during testing over 400 episodes.

top 20 actions taken by the agent during testing, with each action counted once per episode.

There is a certain bias in the figure due to the item sampling – items can only be used in

the episodes in which they were sampled, whereas movement actions are available at all

times and so are naturally taken in more episodes than any other. However, certain trends

can be discerned. For example, the ‘wait’ and ‘random move’ actions are present in a large

number of episodes, due to the lich having the ability to turn invisible and thus making

regular movement actions impossible.

Another seemingly strange trend is the equipping of dragon scale mail of any kind in a

large number of episodes, even though the majority of those episodes end in loss or exceed

the time limit. This aberration is probably due to the fact that none of the dragon scale mail

bonuses help the player against the lich, and so equipping any of them is equivalent to the

‘wait’ action, as described above; since five of them are generated in each episode, they

would naturally occur then as some of the most taken actions. A similar case can be made

for the silver spear, as well as the scrolls of light and food detection which do not lead to

success against the lich. Of course, in the latter cases, there is a negative effect in using the

scroll in that it may be useful at another time during normal gameplay, but the conservation

of items during combat encounters (potentially through the use of negative rewards) is left

to future work.

Finally, we can observe the items that do lead to success in combat: the wand of fire

(deals ranged damage to the lich), ring of invisibility (enables the player to avoid attacks

from the lich), and ring of increase accuracy (increases chance of attack during weapon

combat). The appearance of these items in the top 20 actions, compared to the breadth of
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line up (farther)
wait

approach
attack monster
line up (closer)

random move
uncursed +0 red dragon scale mail

uncursed wand of fire
uncursed +0 silver dragon scale mail
uncursed +0 black dragon scale mail

uncursed +0 yellow dragon scale mail
uncursed +0 blue dragon scale mail

uncursed +0 white dragon scale mail
uncursed +0 green dragon scale mail

uncursed scroll of light
uncursed +0 orange dragon scale mail

uncursed scroll of food detection
uncursed ring of invisibility

uncursed ring of increase accuracy
uncursed +0 silver spear

Actions for lich

success
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Figure 4.6 Actions taken by the DQL model against the lich in over 400 episodes sorted in order
of total times taken from bottom to top. Each action is counted once per episode.
Actions taken in an episode ending in success are shown as red bars and counted
separately from actions taken in an episode ending in loss (yellow bars) or where
the number of actions exceeded 200 in an episode (green bars).

possible items in the player’s inventory, shows the aptitude of the DQL model at selecting

appropriate and specialized items for this particular monster. We now turn to the model

trained against a variety of monsters.

4.4.3 Representative model

Results for the model trained on the subset of monsters from levels 14 to 17 and having

access to all items are presented in Figure 4.7. As seen in the figure, the DQL model per-

forms uniformly better than the baseline. Both the DQL and baseline perform worst on the

lich and nalfeshnee, both of which are difficult monsters that can curse items. Meanwhile,
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Figure 4.7 Success rates of the DQL model (lined green) vs. baseline (black) in testing on
selected monsters from levels 14 to 17 with 400 episodes per monster. Vertical
scale shows percentage of successful combat encounters from 0-100%.

monsters like the guardian naga or Nazgul that have powerful paralyzing attacks (whose

effects would only show up after combat has ended) are easily defeated in this scenario.

To determine the correctness of this model versus the last experiment, we can compare

the success percentage on the lich monster. In the latter experiment which was trained on

only the lich, the DQL model had a success rate of 43.75% whereas here the number is at

about 37%. This lower number could suggest that the model requires a bit more training

time; results for this model did improve slightly overall when doubling training time from

1 to 2 million actions.

To better understand which items the DQL model prefers to use for each monster, the

agent’s actions per monster are summarized in Figure 4.8. Each action is counted once per

episode, de-emphasizing repeated attacks but allowing us to verify that singular actions like

equipping or using an item are performed. Further, only actions that in total make up 2%

or more of all chosen actions or 2% or more of actions taken against an individual monster

are listed; the others are grouped together in the ‘other’ category for easier readability,
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Figure 4.8 Actions taken by the DQL model in testing on selected monsters from levels 14 to
17 with 400 episodes per monster. Vertical scale shows percentage of taken actions
from 0-100%. Each action is counted once per episode. The ‘other’ category groups
together actions that are taken less than 2% of the time. Throwing any type of
projectile was grouped into one category as well as equipping any type of ranged
weapon. All the items present here are +0 and uncursed, omitted for brevity.
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although this may prevent certain one-time use items (potions, scrolls) from being shown.

One clear indication from the figure is that the agent has learned the basic concept of

approaching the monster and attacking when in range. Surprisingly, the ‘line up’ action,

which allows the player to use wands or ranged weapons against the monster, was not taken

in at least 2% of episodes, perhaps owing to the fact that lining up is less optimal than the

pure approach action, which may sometimes be equivalent depending on player/monster

positions.

Further, the random move action is taken in a surprising number of episodes. This result

may indicate that more training time is needed, since the action does nothing but waste a

turn. However, if a monster has a special ability like turning invisible (such as the lich) or

engulfing the player (such as the trapper), the random move action is the only movement

action available and has a chance to damage the monster, so it can have a positive effect in

that (limited) circumstance.

In terms of item use, the figure shows that the DQL model prefers damage-dealing

wands like that of lightning, fire, or cold to use against all monsters. In terms of rings,

the most-equipped one is that of increase damage, followed by that of increase accuracy,

both being rings that increase the melee and/or ranged combat effectiveness of the player.

No scrolls or potions were used with any regularity, suggesting that they are underpowered

compared to wands and melee attacks. With regards to weapons, two silver weapons are

equipped against a number of monsters, including against those which have a special weak-

ness to silver (ice devil, pit fiend); the elven short sword is also equipped against certain

monsters, and ranged weapons are equipped against all monsters at about the same per-

centage. The armor chosen was in the vast majority of cases the yellow dragon scale mail,

a weak choice that suggests either that no armor significantly improved combat outcomes

or possibly that more training time is needed.

Of the monsters here, the lich and nalfeshnee are probably the most difficult to defeat,

which could explain the larger ‘other’ section against these monsters. It is possible that

the model is trying to use a larger variety of different items (mainly weapons) against them

without seeing success on any.

Regarding number of actions taken per game, the DQL model ends up producing shorter

episodes at around 30 actions on average, whereas the baseline average is over 50. The
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difference here could be because the DQL model more frequently uses items like damage-

dealing wands which bring a quicker end to episodes.

Finally, a note on this experiment in general: because of the large number of parameters

(items, monsters, armor class, character and monster levels, and so on), it is difficult to

create an experiment of appropriate difficulty. If the difficulty is too high, then there would

be little difference between a baseline and DQL model since there are no optimal items to

use. If the difficulty is too low, then the DQL model will not have to learn very much in

order to show a large gain over the baseline. The difficulty of the above experiment may

be a bit too low, demonstrated by the fact that wands are used much more than potions

or scrolls, even though the latter items can contribute (albeit in a lesser role) to monster

combat. Future work on this combat approach should include metrics to judge experiment

difficulty leading to better experimental design.

4.5 Discussion

In this chapter, we presented an approach to learning combat in NetHack using deep Q-

learning with a hand-crafted state space and action set tailored to a roguelike context. We

presented results of using the DQL model on different NetHack combat environments and

compared these results with corresponding baseline algorithms. Due to the limited nature of

the state space, action set and environments, these results are not comparable to expert level

play, but provide a useful starting framework. We now turn to using this combat approach,

combined with the earlier exploration algorithms, to play a full game of NetHack.
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Chapter 5

Combining Approaches

In this chapter we combine the exploration and combat approaches and apply them

to a (mostly) feature-complete version of NetHack, with the algorithm exploring dungeon

levels, travelling level by level through the dungeon, and fighting monsters along the way.

We detail below the changes needed for each of the two components in order for them

to function on the full environment. We then present results to show the success rate of

the combined algorithm in terms of dungeon level depth. First, we discuss the expanded

environment.

5.1 NetHack environment

To test the combined algorithm, we can use something close to the full NetHack context,

but must again impose some restrictions.

We retain the presence of monsters and items here, unlike in the exploration chapter.

We continue to proscribe weight limits and hunger. We also render all doors unlocked and

able to be opened even if certain effects (such as the player ‘fumbling’) could normally

prevent them from being opened. The removal of weight limits, hunger and locked doors

does render the game less difficult, but still leaves a large amount of challenge for a player,

autonomous or otherwise.

There are also some problematic level properties which must be addressed. First, we

disallow certain dungeon branches: a branch is a set of optionally traversable levels that
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at some point splits off from the regular level sequence. These branches (including the

Gnomish Mines, Sokoban, and Quest levels) have vastly different geography, taking place

in caverns with no discernible room or corridor shapes. Although there is no inherent

obstacle to running our algorithm on these levels, extra implementation work is needed

to recognize and parse these areas, which we do not attempt here. For the same reasons

we also remove the special ‘oracle’ and ‘big-room’ levels. Late-game levels also exhibit

similar behaviour, but we are unlikely to reach their depth and so they are not considered

problematic at present.

5.2 Combined algorithm

We present here the combination of the aforementioned exploration and combat algorithms.

Each of the two components will be engaged when necessary. The agent will begin a level

by exploring, then switch over to combat upon observing a monster. On monster death,

the agent will continue exploring. When exploration of the level terminates, the agent will

proceed to go down the staircase to the next level and continue there. Below we discuss the

changes needed for each component to function in this environment.

5.2.1 Exploration changes

Three main issues arising from the full level context must be addressed to allow the explo-

ration algorithm to function. We consider the existence of items, the need to find the exit

staircase, and the negative effects caused by monster combat that may impede exploration.

Items are often found during exploration, and due to their occasional usefulness in

combat, should be picked up. Items can be randomly generated in rooms, and also drop

from monsters on death. Since weight restrictions have been removed, all items can be

picked up without regard for their quality or importance in combat; during combat, the

DQL model will choose optimally amongst the available items, so possessing useless items

is not a problem.

The methodology for integrating item pickup into the exploration algorithm is as fol-

lows. When we enter a room, the positions of all items inside are added to the frontier list
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Figure 5.1 Visualization of a NetHack occupancy map with monsters and items. Monsters are
represented as magenta circles and items as orange triangles. In this map, the
player (blue circle) has just entered a room containing one monster and a few items.

(items in shops are ignored, due to additional complexity involving buying the item after

picking it up). Then, in component evaluation, we prioritize item positions above all other

frontiers, moving to and picking up each item in turn (in order of closest distance to player),

before reverting to the standard component/frontier evaluation. When in a corridor, we will

pick up an item if we happen to be standing on it, but to conserve actions we will not make

a special diversion to other corridor spots just to pick up an item. A sample occupancy map

with items highlighted is shown in Figure 5.1.

Another issue is locating the staircase to the next level, which is necessary to progress

further in the game. With some occupancy map parameter settings, discovery of all rooms

is not always achieved, and so the room containing the staircase may not be found. In

these cases, when the exploration algorithm terminates (when there are no more interesting

frontiers/components), we will continue visiting frontiers on the frontier list (in order of

closest distance to player) until the room with the exit is found. If the exit has still not been

found, we will start travelling to any items that have not been picked up, and then to any

sleeping monsters that are still alive, since they may be obscuring the exit.

Finally, certain effects the player may contract during monster combat are deleterious to
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exploration and thus must be addressed. For example, if the player is blinded, hallucinating

or stunned, they will not be able to move around the level and/or accurately sense their

surroundings. In these cases, we will simply wait by skipping turns until the status effect

has lifted. In other cases, a monster may engulf the player, removing their view of the

map; we handle this case by stopping occupancy map updates until the player is no longer

engulfed. Finally, the past presence of monsters and/or items in rooms can cause difficulties

in the algorithm’s parsing of the map by obscuring ground tiles, leading to inaccuracies in

the occupancy map. To handle these cases, we edit the NetHack code to emit the ground

character (e.g., room symbol, corridor symbol, etc.) for the player’s current position.

5.2.2 Combat changes

The main challenge with the combat approach is deciding when to start and end an episode.

In the regular arena training case, we always receive a special signal from NetHack on

monster death, so we know exactly when each episode ends. It is more ambiguous here,

however, since we are progressing through a level and will have many combat encounters,

and may not receive such a signal. Also, there is a much higher chance here of encountering

more than one monster at once, raising additional issues to deal with if such a signal would

be introduced.

A monster combat in this context will begin upon first observing a monster’s glyph

on the NetHack map. There are four requirements that must be met upon observation:

the monster’s position has to be reachable from the player’s position with the player’s

current knowledge of the map, the monster must be within 6 units of the player (calculated

using Manhattan distance), the monster must not be peaceful, tame, or a shopkeeper, and

the player must be able to sense the monster using the ‘detect monsters’ command which

outputs the names of nearby monsters. These four requirements usually guarantee that the

monster can be engaged in melee or ranged combat.

Determining end of monster combat is a bit trickier. Since we are not sent a signal by

NetHack when a monster dies, we must rely on the presence of the monster glyph on the

map. When it disappears, we end the episode. This formulation presents some difficulties

since a monster may simply walk out of the player’s field of view, teleport to another place
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on the map, or become invisible, yet still be considered dead. At present, we ignore these

latter cases since they are each very tricky to handle.

The same state space as described in the combat section is used for these combats. We

expect the monster glyph property to be especially helpful, since encounters with monsters

in the early game during training could aid generalizability by helping to influence actions

on monsters of the same class only encountered during testing.

5.3 Experiments conducted

We run the combined algorithm in the NetHack environment in phases, with each phase

containing both a training and testing component. First, the algorithm is trained on combat

encounters recorded during the previous phase, in arena-style one-on-one combat. Then, it

is tested on the full NetHack context. We explain below the motivation for and details of

this approach.

Training on previously-encountered monster combats is crucial to success of the com-

bined algorithm. Since this algorithm will always start on level 1, it will be running into a

small subset of monsters that get generated primarily on early levels, in addition to finding a

similar small subset of early-game items, before it dies to a monster that it has never seen or

strategized for. Thus, only a small portion of the state space will be visited. After training

on these encounters, the agent will in testing doubtlessly get to further levels than before

with its better knowledge. In these further levels, it will encounter larger and larger subsets

of monsters and items. Thus it will need to be trained again on these new encounters.

To be able to train on previously-encountered monster combats, information about each

combat encounter is recorded. In particular, everything necessary to reconstruct the initial

state of the combat (player attributes, inventory, monster, dungeon level, etc.) is saved so

that it can be reproduced exactly during training. The reconstructed state in training is then

checked for equality with the recorded state to ensure correctness.

Training is performed on a sample of the recorded combats. Combats are sampled to

balance out encounters between different monsters. Some monsters are much rarer than

others on certain early levels, so encounters are capped at 300 per monster to address this

imbalance. Duplicate encounters, based on monster name, player inventory, experience
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level, strength, dexterity, armor class, status effects and dungeon level, are also removed.

Further, of the 300 encounters per monster, the number in which the player is suffering a

deleterious status effect (e.g., lycanthropy or confusion) is capped at 15% of total encoun-

ters. This balancing is necessary to ensure that the majority of training focuses on the most

likely pathway an agent will take through the game.

We also impose a special order on the order of combats played through during train-

ing. Combats are sorted by monster difficulty: monsters of easier difficulty will be given

to the agent first, followed by ones of harder difficulty. This order will help the agent learn

basic combat maneuvers on easier monsters in order to save time when training on harder

monsters later on that require more advanced tactics. After training on the full set of sam-

pled combats, the same batch is then repeated twice, for a total of three times per combat.

Repeating in this manner will help the agent to better explore the possible actions in each

combat and refine its action-values.

5.4 Results

Results for the combined exploration/combat algorithm are presented in Figure 5.2. The

figure shows how far in terms of dungeon level each successively-trained model was able to

reach. As mentioned earlier, each successive model is trained on the monsters encountered

during testing of the previous model; later models (‘phases’) thus have an advantage over

earlier ones. Phase 1 is trained on the monsters encountered by the baseline algorithm,

a combined baseline combat/standard occupancy map algorithm. All models were tested

on 200 playthroughs of the described NetHack context. Note that due to the restrictions

imposed on the environment, the only cause of player death is monster combat.

In the figure, we see that there is a general downwards trend as dungeon level increases.

This trend is most probably due to two reasons. First, harder monsters are naturally found

deeper in the dungeon, thus inducing more player deaths. Second, reaching a deeper dun-

geon level means not failing on any combats in any of the previous dungeon levels. Thus,

the further one goes, the higher the probabilities of dying increase.

We also see in the figure a very large gap between the phase 1-2 models and phase

3+ models. This discrepancy is due to some altered hyperparameters. In particular, we
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Figure 5.2 Dungeon levels reached by successively-trained models of the combined explo-
ration/combat algorithm. Baseline uses occupancy map algorithm for exploration
and baseline algorithm for combat.

decreased the learning rate from 10−6 to 5 ∗ 10−7, which seemed to soften Q-network in-

stability. We also modified the Keras-RL learning agent implementation to train over a

specified number of episodes (i.e., three times the number of combat encounters) instead

of a specified number of actions (which would need to be estimated based on the average

actions per encounter). These two changes seem to drastically increase model success rate.

After that improvement, we see much smaller but positive gains in depth reached from

phases 3 to 7, with phase 7 in particular doing better than baseline at reaching dungeon

levels 7 through 9, but losing the advantage at dungeon levels 10+. It is hypothesized that

further phases would continue to show gradual improvement. However, their success is

limited due to their relatively simplistic combat movement actions. Future improvements

to the combat algorithm may show higher gains relative to baseline.

5.5 Discussion

In this chapter we presented a combined exploration-combat algorithm for use with a nearly

complete game of NetHack. Ideally, these two components would be learned concurrently

with the use of perhaps the same learning algorithm, but at great computational cost. We

thus demonstrated how to fuse the more computationally-friendly approaches presented
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earlier in the thesis to achieve a combined algorithm. Results were presented to show the

algorithm’s success rates: it does moderately well but improvements can still be made. In

future we would hope to make comparisons to and surpass existing rules-based bots for

NetHack, which we discuss in the next chapter.
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Chapter 6

Related Work

Below we will discuss related work for the exploration and combat aspects of this work,

in terms of both other research as well as approaches taken by existing NetHack bots,

including BotHack (the first bot to complete the game) and the Tactical Amulet Extraction

Bot (TAEB). (Other NetHack bots can be found at [MLO+15]). As previously stated, these

bots tend to use hard-coded strategies for NetHack mechanics.

6.1 Exploration

Automated exploration or mapping of an environment has been frequently studied in sev-

eral fields, primarily including robotics and with respect to the problem of graph traversal,

with the latter having some connections to video games.

Exploration in robotics branches into many different topics, with some factors being

the type of environment to be explored, amount of prior knowledge about the environment,

and accuracy of robotic sensors. One frequently-discussed approach is simultaneous local-

ization and mapping (SLAM), where a robot must map a space while keeping precise its

current position inside said space. Since in NetHack we always have accurate information

about player position, this issue can be avoided. Good surveys of robotic exploration algo-

rithms, with some coverage on the SLAM issue, can be found in [JGR12] and [LaV06]. A

more general survey of robotic mapping that discusses exploration can be found in [Thr02].

Work involving occupancy maps in particular was presented earlier in section 2.2.
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6.1. Exploration

The exploration problem in robotics is also related to the coverage path planning prob-

lem, where a robot must determine a path to take that traverses the entirety of a known

space. A cellular decomposition of the space is used in many such approaches. For ex-

ample, Xu et al. presented an algorithm to guarantee complete coverage of a known en-

vironment containing obstacles while minimizing distance travelled, based on the boustro-

phedon cellular decomposition method, which decomposes a space into slices [XVR14].

See Choset [Cho01] for a comprehensive discussion and survey of selected coverage ap-

proaches.

Many exploration strategies, including our own approach, involve a selection of fron-

tiers to visit. This selection often uses an evaluation function which takes into account ob-

jectives like minimizing distance travelled (i.e., choosing the closest frontier) or exploring

the largest amount of map the fastest. Yamauchi described a strategy using occupancy maps

to always move towards the closest frontier in order to explore a space [Yam97], with a fo-

cus on how to detect frontiers in imprecise occupancy maps. Gonzàlez-Baños and Latombe

discussed taking into account both distance to a frontier and the ‘utility’ of that frontier (a

measure of the unexplored area potentially visible when at that position) [GBnL02], also

taking into account robotic sensor issues. We use a similar cost-utility strategy for our

evaluation function, with utility determined by probabilities in the occupancy map, and

cost by distance to player. Juliá showed that a cost-utility method for frontier evaluation

explores more of the map faster than the closest frontier approach, but in the end takes

longer to explore the entire map than the latter since it must backtrack to explore areas

of low utility [JGR12]. Further discussion and comparison of evaluation functions can be

found in [Ami08].

There has also been research on the idea of moving towards areas of high utility while

avoiding frontiers in low utility areas. A strategy by Newman et al. used environment

features (doors, wall segments, etc.) to guide autonomous exploration, with specific prefer-

ences for moving to large open areas while avoiding past areas [NBL03]. Another approach

by Hernández & Baier focused on ‘depression avoidance,’ a property that guides real-time

search algorithms to cleanly exit regions with ‘heuristic depressions,’ regions of the map

where the heuristic used in search gives improper values when compared with heuristic

values for the region’s border [HB11].
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6.1. Exploration

Exploration can also be formulated as a graph traversal problem. An obvious cor-

respondence exists with the travelling salesman problem. Kalyanasundarum and Pruhs

described the ‘online TSP’ problem as exploring an unknown weighted graph, visiting all

vertices while minimizing total cost, and presented an algorithm to do so efficiently [KP94].

Koenig analyzed a greedy approach to explore an unknown graph (always moving to the

closest frontier) and showed that the upper bound for worst-case travel distances for full

map exploration is reasonably small [KTH01, TK03]. Hsu and Hwang demonstrated a

provably complete graph-based algorithm for autonomous exploration of an indoor envi-

ronment [HH98].

Graph traversal for exploration can also be applied to video games. Chowdhury looked

at approaches for computing a tour of a fully known environment in the context of exhaus-

tive exploration strategies for non-player characters in video games [CV16]. Baier et al.

proposed an algorithm to guide an agent through both known and partially known terrain

in order to catch a moving target in video games [BBHH15]. Hagelbäck and Johansson

explored the use of potential fields to discover unvisited portions of a real-time strategy

game map with the goal of creating a better computer AI for the game [HJ08]. Our work,

in contrast, focuses on uneven exploration in sparse, dungeon-like environments, where

exhaustive approaches compete with critical resource efficiency.

BotHack, a successful autonomous player for NetHack, explores a level by preferring to

move towards large unexplored spaces. It uses the Dijkstra algorithm with edge weightings

that take into account how dangerous a path is, measured by the presence of monsters

and/or traps along the route, items in the player’s inventory that may allow for safer travel,

and if the player had travelled that route without harm previously [Kra15a].

6.1.1 Secret areas in video games

Secret areas have not been widely studied. They have sometimes been mentioned in relation

to their purpose in game design. They can be a mechanism to reward players for thoroughly

exploring an area, occasionally containing valuable rewards that can help the player on their

journey [HW10]. In certain genres, secret areas are irrelevant to player power but confer

a sense of achievement on the player clever enough to find them. Gaydos & Squire found
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6.2. Learning

that hidden areas in the context of educational games are memorable moments for players

and generate discussion amongst them [GS12]. In contrast, procedurally-generated secret

areas like the ones found in roguelike games (like NetHack) have no educational benefit

and seem to invoke less excitement since the searching process becomes repetitive.

BotHack employs a simple secret area detection strategy to find secret areas in NetHack.

If either the exit to the next level has not yet been found and/or there is a large rectangular

chunk of the level that is unexplored and has no neighbouring frontiers, it will start search-

ing at positions adjacent to that area [Kra15a, Kra15b]. Meanwhile, TAEB searches near

unexplored areas of size at least 5x5 as well as dead-end corridors, with a maximum of 10

tries at each searchable position [MLO+13].

6.2 Learning

There has been much recent interest in applying reinforcement learning to video games.

Mnih et al. notably proposed the Deep Q-Network (DQN) and showed better than human-

level performance on a large set of Atari games such as Breakout and Pong [MKS+13,

MKS+15]. Their model uses raw pixels (frames) from the game screen for the state space,

or in a formulation proposed by [SM17], game RAM. We use the same general deep Q-

learning approach here, but with a hand-crafted game state and action set to speed up learn-

ing, given the much larger basic action set and complex state space typical of roguelikes.

Kempka et al. demonstrated the use of deep Q-learning on the 3D video game Doom, simi-

larly using visual input [KWR+16], with applications by [LC17]. Narasimhan et al. used a

deep learning approach to capture game state semantics in text-based Multi-User Dungeon

(MUD) games using a LSTM-DQN [NKB15]. Uriarte & Ontañón presented a method for

learning combat tactics for real-time strategy games from previously-collected player com-

bat replays [UO15]. They used StarCraft for their testing environment and learned from

the replays a forward model for Monte-Carlo Tree Search.

Our work uses an abstracted state space to ease learning time. Abstracted game states

have been previously studied for RTS games [UO14] as well as board games like Dots-

and-Boxes [ZLPZ15], in order to similarly improve efficiency on otherwise intractable

state spaces.
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6.2. Learning

RL approaches have also been applied to other, more traditional types of games. The

use of separate value and policy networks combined with Monte-Carlo simulation has been

shown to perform spectacularly on the game of Go [SHM+16], while using RL to learn

Nash equilibriums in games like poker has also been studied [HS16].

BotHack uses movement-based strategies in combat, such as luring monsters into nar-

row corridors or retreating to the exit staircase to have an escape option [Kra15a, Kra15b].

It also prefers to use ranged weapons against monsters with special close-range attacks and

abilities. TAEB’s strategy is similar and includes the tactic of kiting monsters in groups,

which is to draw one monster at a time away from the group with projectile attacks in or-

der to not be overwhelmed. It also employs an item rating system to determine the best

equipment to use [MLO+13].

An automated player also exists for Rogue, a 1980 predecessor to NetHack, called Rog-

O-Matic. It uses an expert-system approach, although simple learning is enabled through a

persistent store [MJAH84].
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Chapter 7

Conclusions and Future Work

The allure of certain games lies in their challenging nature. This challenge often takes

the form of puzzles that require logic and good memory to solve, and such qualities are

by nature easy to code algorithmically. Games of the roguelike genre in particular share a

common set of these challenges in their game systems, such as exploration of a game map

or monster combat. In this thesis, we introduced algorithmic approaches to tackle these

two listed aspects of roguelike games, demonstrating their effectiveness in the prototypical

roguelike game, NetHack.

The exploration algorithm we presented has been shown to efficiently explore dungeon

levels in NetHack, visiting open frontiers that are most likely to lead to undiscovered rooms

while minimizing visitation of areas of low room probability, as well as taking into account

the chances of secret room presence. It borrows the occupancy map data structure from the

field of robotics, while using the concept of diffusion originally introduced in an algorithm

for searching for a moving target. Results presented show improvement over a typical

greedy exploration algorithm, particularly with regard to discovery of secret rooms.

An exploration algorithm like the one set forth can have many uses. It can alleviate the

tedium of the repetitive movement needed for manual exploration if used as an occasional

substitute. It can further be helpful to those operating with reduced interfaces. Exploration

is also a significant sub-problem in developing more fully automated, learning AI, and

techniques which can algorithmically solve exploration can be useful in allowing future

automation to focus on applying AI to higher level strategy rather than basic movement
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concerns.

Future work on the presented exploration algorithm aims at further increasing explo-

ration efficiency, as well as verifying its generalization on other roguelike games and games

with similar map designs. One particular avenue to increase exploration would be to further

analyze the average map exploration trajectory with an eye to eliminating wasted moves to-

wards the end of a trajectory (e.g., by better determining when to stop exploring). We would

also like to further explore the concept of diffusion, perhaps considering a ‘local’ diffusion

of probabilities that would radiate from the player’s current position, in order to accommo-

date larger map sizes. A sharper departure would be to replace diffusion with static prior

information about the typical nature of maps, thus lending more stability to the algorithm.

Finally, with regards to efficiency of computation, different data structures needing to store

less information may be considered, as commonly done in practical SLAM (simultaneous

localization and mapping) algorithms in robotics [TBF05].

Meanwhile, our approach to combat uses a deep reinforcement learning algorithm in

order to develop a model successful at matching simplistic movement tactics and a wide va-

riety of items to the multitude of monsters in NetHack. To reduce environment complexity,

the approach uses a hand-crafted state space and action set, with experiments conducted in

a limited ‘arena combat’ setting. Combat is a significant and difficult mechanic in roguelike

games, and our learning approach points towards obviating the need to hard-code strate-

gies for an autonomous player. Results for our model show that it outperforms a simpler

baseline strategy, trading long but automated training costs for better performance.

The combat approach presented deals with the basic movement and item concerns, but

there are many avenues for future work. In terms of increasing success rate, more advanced

movement tactics could be considered, such as retreating or escaping from monsters that

are too powerful for the agent or that do not have to be killed for progression (like those

that are tame or peaceful, or not immediately hostile). In addition, we would like to bet-

ter maintain item resources by disincentivizing the agent from using powerful items on

weaker monsters, perhaps deriving values for item utility and monster power from learned

action-values. We would also like to verify the generality of the combat approach on other

roguelike games, as well as investigating more complicated, multi-combat scenarios, where

resource management and prolonged status effects come into play. Finally, we would like
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to compare our model results against a more advanced baseline, either by running an ex-

isting rules-based NetHack bot in our combat environment, or by parsing player data from

online sources and gathering their win rates in similar combat scenarios.

Finally, this thesis presented a simple combination of the exploration and combat ap-

proaches on a wider NetHack context, showing the effectiveness of learning combat in

stages and its improvement compared to baseline. This combination can be improved in

future by extending support for more game features; for example, allowing the exploration

approach to consider more diverse dungeon layouts that sometimes occur in the game, or

giving the combat approach information about nearby dungeon features like fountains or

stair access that can enable more advanced tactics.

86



Bibliography

[Ami08] Francesco Amigoni. Experimental evaluation of some exploration

strategies for mobile robots. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation, May 2008,

ICRA’08, pages 2818–2823.

[Bai95] Leemon C. Baird, III. Residual algorithms: Reinforcement learn-

ing with function approximation. In Proceedings of the Twelfth

International Conference on Machine Learning, Tahoe City, Cal-

ifornia, USA, July 1995, ICML’95, pages 30–37.

[BBHH15] Jorge A. Baier, Adi Botea, Daniel Harabor, and Carlos Hernán-

dez. Fast algorithm for catching a prey quickly in known and par-

tially known game maps. IEEE Transactions on Computational

Intelligence and AI in Games, 7(2):193–199, June 2015.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-

der, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI

Gym, June 2016.

<https://arxiv.org/abs/1606.01540> .

[BFDW06] Frédéric Bourgault, Tomonari Furukawa, and Hugh F. Durrant-

Whyte. Optimal search for a lost target in a Bayesian world.

87

http://ieeexplore.ieee.org/document/4543637/
http://ieeexplore.ieee.org/document/4543637/
http://dl.acm.org/citation.cfm?id=3091622.3091627
http://dl.acm.org/citation.cfm?id=3091622.3091627
http://ieeexplore.ieee.org/document/6851877/
http://ieeexplore.ieee.org/document/6851877/
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://doi.org/10.1007/10991459_21


Bibliography

In Shin’ichi Yuta, Hajima Asama, Erwin Prassler, Takashi Tsub-

ouchi, and Sebastian Thrun, editors, Field and Service Robotics:

Recent Advances in Reserch and Applications, pages 209–222.

Springer, Berlin, Heidelberg, July 2006.

[C+15] François Chollet et al. Keras. https://github.com/fchollet/

keras, 2015.

[Cho01] Howie Choset. Coverage for robotics — a survey of recent results.

Annals of Mathematics and Artificial Intelligence, 31(1-4):113–

126, May 2001.

[CV16] Muntasir Chowdhury and Clark Verbrugge. Exhaustive explo-

ration strategies for NPCs. In Proceedings of the 1st International

Joint Conference of DiGRA and FDG: 7th Workshop on Procedu-

ral Content Generation, August 2016, DiGRA/FDG’16.

[CV17a] Jonathan Campbell and Clark Verbrugge. Exploration in Net-

Hack using occupancy maps. In Proceedings of the Twelfth In-

ternational Conference on Foundations of Digital Games, August

2017, FDG’17.

[CV17b] Jonathan Campbell and Clark Verbrugge. Learning combat in

NetHack. In Proceedings of the Thirteenth Annual AAAI Confer-

ence on Artificial Intelligence and Interactive Digital Entertain-

ment, October 2017, AIIDE’17, pages 16–22.

[GBnL02] Héctor H. Gonzàlez-Baños and Jean-Claude Latombe. Naviga-

tion strategies for exploring indoor environments. International

Journal of Robotics Research, 21(10-11):829–848, October 2002.

[Glo13] Glosser.ca. Colored neural network. https://commons.

wikimedia.org/wiki/File:Colored_neural_network.svg,

2013.

88

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1023/a:1016639210559
http://gram.cs.mcgill.ca/papers/chowdhury-16-exhaustive.pdf
http://gram.cs.mcgill.ca/papers/chowdhury-16-exhaustive.pdf
http://gram.cs.mcgill.ca/papers/campbell-17-exploration.pdf
http://gram.cs.mcgill.ca/papers/campbell-17-exploration.pdf
http://gram.cs.mcgill.ca/papers/campbell-17-learning.pdf
http://gram.cs.mcgill.ca/papers/campbell-17-learning.pdf
https://doi.org/10.1177/0278364902021010834
https://doi.org/10.1177/0278364902021010834
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg


Bibliography

[GS12] Matthew J. Gaydos and Kurt D. Squire. Role playing games

for scientific citizenship. Cultural Studies of Science Education,

7(4):821–844, March 2012.

[HB11] Carlos Hernández and Jorge A. Baier. Real-time heuristic search

with depression avoidance. In 22nd International Joint Confer-

ence on Artificial Intelligence, Barcelona, Catalonia, Spain, July

2011, IJCAI’11, pages 578–583. AAAI Press.

[HGS16] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforce-

ment learning with double Q-learning. In Proceedings of the Thir-

tieth AAAI Conference on Artificial Intelligence, Phoenix, Ari-

zona, February 2016, AAAI’16, pages 2094–2100. AAAI Press.

[HH98] Jane Yung-Jen Hsu and Liang-Sheng Hwang. A graph-based ex-

ploration strategy of indoor environments by an autonomous mo-

bile robot. In Proceedings of the IEEE International Conference

on Robotics and Automation, May 1998, volume 2 of ICRA’98,

pages 1262–1268.

[Hin11] Pieter Hintjens. ZeroMQ: The Guide. http://zguide.zeromq.

org, 2011.

[HJ08] Johan Hagelbäck and Stefan J. Johansson. Dealing with fog of

war in a Real Time Strategy game environment. In IEEE Confer-

ence on Computational Intelligence and Games, December 2008,

CIG’08, pages 55–62.

[HS16] Johannes Heinrich and David Silver. Deep reinforcement learning

from self-play in imperfect-information games. In NIPS Deep

Reinforcement Learning Workshop, March 2016.

[HW10] Kenneth Hullett and Jim Whitehead. Design patterns in FPS lev-

els. In Proceedings of the Fifth International Conference on the

Foundations of Digital Games, June 2010, FDG’10, pages 78–85.

89

https://doi.org/10.1007/s11422-012-9414-2
https://doi.org/10.1007/s11422-012-9414-2
https://www.aaai.org/ocs/index.php/ijcai/ijcai11/paper/view/3308
https://www.aaai.org/ocs/index.php/ijcai/ijcai11/paper/view/3308
http://dl.acm.org/citation.cfm?id=3016100.3016191
http://dl.acm.org/citation.cfm?id=3016100.3016191
https://doi.org/10.1109/robot.1998.677276
https://doi.org/10.1109/robot.1998.677276
https://doi.org/10.1109/robot.1998.677276
http://zguide.zeromq.org
http://zguide.zeromq.org
https://doi.org/10.1109/cig.2008.5035621
https://doi.org/10.1109/cig.2008.5035621
http://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1603.01121
http://doi.acm.org/10.1145/1822348.1822359
http://doi.acm.org/10.1145/1822348.1822359


Bibliography

[Int08] International Roguelike Development Conference. Berlin inter-

pretation. http://www.roguebasin.com/index.php?title=

Berlin_Interpretation, 2008.

[Isl05] Damián Isla. Probabilistic target-tracking and search using occu-

pancy maps. In AI Game Programming Wisdom 3. Charles River

Media, 2005.

[Isl13] Damián Isla. Third Eye Crime: Building a stealth game around

occupancy maps. In Proceedings of the Ninth Annual AAAI Con-

ference on Artificial Intelligence and Interactive Digital Enter-

tainment, October 2013, AIIDE’13.

[JGR12] Miguel Juliá, Arturo Gil, and Oscar Reinoso. A comparison of

path planning strategies for autonomous exploration and mapping

of unknown environments. Autonomous Robots, 33(4):427–444,

November 2012.

[KP94] Bala Kalyanasundaram and Kirk R. Pruhs. Constructing compet-

itive tours from local information. Theoretical Computer Science,

130(1):125–138, August 1994.

[Kra15a] Jan Krajicek. BotHack - a NetHack bot framework. https://

github.com/krajj7/BotHack, 2015.

[Kra15b] Jan Krajicek. Framework for the implementation of bots for the

game NetHack. Master’s thesis, Charles University in Prague,

2015.

[KTH01] Sven Koenig, Craig Tovey, and William Halliburton. Greedy

mapping of terrain. In Proceedings of the IEEE International

Conference on Robotics and Automation, February 2001, vol-

ume 4 of ICRA’01, pages 3594–3599.

90

http://www.roguebasin.com/index.php?title=Berlin_Interpretation
http://www.roguebasin.com/index.php?title=Berlin_Interpretation
https://www.aaai.org/ocs/index.php/aiide/aiide13/paper/view/7562
https://www.aaai.org/ocs/index.php/aiide/aiide13/paper/view/7562
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1007/3-540-56939-1_65
https://doi.org/10.1007/3-540-56939-1_65
https://github.com/krajj7/BotHack
https://github.com/krajj7/BotHack
https://is.cuni.cz/webapps/zzp/detail/151037/?lang=en
https://is.cuni.cz/webapps/zzp/detail/151037/?lang=en
https://doi.org/10.1109/robot.2001.933175
https://doi.org/10.1109/robot.2001.933175


Bibliography

[KWR+16] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub

Toczek, and Wojciech Jaskowski. ViZDoom: A Doom-based

AI research platform for visual reinforcement learning. In IEEE

Conference on Computational Intelligence and Games, Septem-

ber 2016, CIG’16, pages 1–8.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University

Press, Cambridge, U.K., 2006.

[LC17] Guillaume Lample and Devendra Singh Chaplot. Playing FPS

games with deep reinforcement learning. In Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, February

2017, AAAI’17, pages 2140–2146. AAAI Press.

[LLKS86] E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B.

Shmoys, editors. The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization. Wiley, New York, 1986.

[ME85] Hans Moravec and Alberto E. Elfes. High resolution maps from

wide angle sonar. In Proceedings of the IEEE International

Conference on Robotics and Automation, March 1985, ICRA’85,

pages 116–121.

[MJAH84] Michael K. Mauldin, Guy Jacobson, Andrew Appel, and Leonard

Hamey. Rog-O-Matic: A belligerent expert system. In Proceed-

ings of the Fifth Biennial Conference of the Canadian Society for

Computational Studies of Intelligence, 1984, volume 5.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex

Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Ried-

miller. Playing Atari with deep reinforcement learning. In NIPS

Deep Learning Workshop, December 2013.

91

http://dx.doi.org/10.1109/cig.2016.7860433
http://dx.doi.org/10.1109/cig.2016.7860433
http://aaai.org/ocs/index.php/aaai/aaai17/paper/view/14456
http://aaai.org/ocs/index.php/aaai/aaai17/paper/view/14456
https://doi.org/10.1109/robot.1985.1087316
https://doi.org/10.1109/robot.1985.1087316
https://www.cs.princeton.edu/~appel/papers/rogomatic.html
http://arxiv.org/abs/1312.5602


Bibliography

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.

Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Ried-

miller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,

Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Has-

sabis. Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533, February 2015.

[MLO+09] Shawn M. Moore, Jesse Luehrs, Stefan O’Rear, Sebastian P.,

Sean Kelly, Anthony Boyd, and Alex Smith. Synchroniz-

ing with NetHack. https://taeb.github.io/2009/06/12/

synchronizing-with-nethack.html, 2009.

[MLO+13] Shawn M. Moore, Jesse Luehrs, Stefan O’Rear, Sebastian P., Sean

Kelly, Anthony Boyd, and Alex Smith. The Tactical Amulet

Extraction Bot – behavioral AI. https://github.com/TAEB/

TAEB-AI-Behavioral, 2013.

[MLO+15] Shawn M. Moore, Jesse Luehrs, Stefan O’Rear, Sebastian P.,

Sean Kelly, Anthony Boyd, and Alex Smith. TAEB - other bots.

https://taeb.github.io/bots.html, 2015.

[Mor88] Hans Moravec. Sensor fusion in certainty grids for mobile robots.

AI Magazine, 9(2):61–74, July 1988.

[NBL03] Paul M. Newman, Michael Bosse, and John J. Leonard. Au-

tonomous feature-based exploration. In Proceedings of the IEEE

International Conference on Robotics and Automation, Septem-

ber 2003, volume 1 of ICRA’03, pages 1234–1240.

[NetHack Dev Team15] NetHack Dev Team. NetHack 3.6.0: Download the source. http:

//www.nethack.org/v360/download-src.html, 1987–2015.

[NetHack Wiki15] NetHack Wiki. Starvation. https://nethackwiki.com/wiki/

Starvation, 2015.

92

http://dx.doi.org/10.1038/nature14236
https://taeb.github.io/2009/06/12/synchronizing-with-nethack.html
https://taeb.github.io/2009/06/12/synchronizing-with-nethack.html
https://github.com/TAEB/TAEB-AI-Behavioral
https://github.com/TAEB/TAEB-AI-Behavioral
https://taeb.github.io/bots.html
https://doi.org/10.1609/aimag.v9i2.676
https://doi.org/10.1109/robot.2003.1241761
https://doi.org/10.1109/robot.2003.1241761
http://www.nethack.org/v360/download-src.html
http://www.nethack.org/v360/download-src.html
https://nethackwiki.com/wiki/Starvation
https://nethackwiki.com/wiki/Starvation


Bibliography

[NetHack Wiki16a] NetHack Wiki. Comestible. https://nethackwiki.com/

wiki/Comestible#Food_strategy, 2016.

[NetHack Wiki16b] NetHack Wiki. Standard strategy. https://nethackwiki.com/

wiki/Standard_strategy, 2016.

[NetHack Wiki17a] NetHack Wiki. Black pudding — NetHack wiki. https://

nethackwiki.com/wiki/Black_pudding, 2017.

[NetHack Wiki17b] NetHack Wiki. Strength in game formulas. https:

//nethackwiki.com/wiki/Attribute#Strength_in_game_

formulas, 2017.

[NKB15] Karthik Narasimhan, Tejas D. Kulkarni, and Regina Barzilay.

Language understanding for text-based games using deep rein-

forcement learning. In Proceedings of the Conference on Empir-

ical Methods in Natural Language Processing, September 2015,

EMNLP’15, pages 1–11.

[pNs16] N.A.O. public NetHack server. NetHack – top types of death.

https://alt.org/nethack/topdeaths.html, 2016.

[Res14] Pedro Tomás Mendes Resende. Reinforcement learning of task

plans for real robot systems. Master’s thesis, Instituto Superior

Técnico, 2014.

[SB98] Richard S. Sutton and Andrew G. Barto. Introduction to Rein-

forcement Learning. MIT Press, Cambridge, MA, USA, 1st edi-

tion, 1998.

[SHM+16] David Silver, Aja Huang, Christopher J. Maddison, Arthur

Guez, Laurent Sifre, George van den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-

93

https://nethackwiki.com/wiki/Comestible#Food_strategy
https://nethackwiki.com/wiki/Comestible#Food_strategy
https://nethackwiki.com/wiki/Standard_strategy
https://nethackwiki.com/wiki/Standard_strategy
https://nethackwiki.com/wiki/Black_pudding
https://nethackwiki.com/wiki/Black_pudding
https://nethackwiki.com/wiki/Attribute#Strength_in_game_formulas
https://nethackwiki.com/wiki/Attribute#Strength_in_game_formulas
https://nethackwiki.com/wiki/Attribute#Strength_in_game_formulas
https://arxiv.org/abs/1506.08941
https://arxiv.org/abs/1506.08941
https://alt.org/nethack/topdeaths.html
https://fenix.tecnico.ulisboa.pt/downloadfile/563345090413107/dissertacao.pdf
https://fenix.tecnico.ulisboa.pt/downloadfile/563345090413107/dissertacao.pdf


Bibliography

ray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of Go with deep neural networks and tree search. Na-

ture, 529:484–503, January 2016.

[SM17] Jakub Sygnowski and Henryk Michalewski. Learning from the

memory of Atari 2600. In Tristan Cazenave, Mark H.M. Winands,

Stefan Edelkamp, Stephan Schiffel, Michael Thielscher, and Ju-

lian Togelius, editors, Computer Games: 5th Workshop on Com-

puter Games, and 5th Workshop on General Intelligence in Game-

Playing Agents, Held in Conjunction with the 25th International

Conference on Artificial Intelligence (Revised Selected Papers),

New York, NY, USA, July 2017, CGW’16/GIGA’16/IJCAI’16,

pages 71–85.

[SPS99] Richard S. Sutton, Doina Precup, and Satinder Singh. Between

MDPs and semi-MDPs: A framework for temporal abstraction in

reinforcement learning. Artificial Intelligence, 112(1-2):181–211,

August 1999.

[Sut17] Kent Sutherland. Playing roguelikes when you can’t see — Rock,

Paper, Shotgun. https://www.rockpapershotgun.com/2017/

04/05/playing-roguelikes-when-you-cant-see, 2017.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

Robotics. The MIT Press, 2005.

[Thr02] Sebastian Thrun. Robotic mapping: A survey. In Gerhard Lake-

meyer and Bernhard Nebel, editors, Exploring Artificial Intelli-

gence in the New Millennium, pages 1–35. Morgan Kaufmann,

2002.

[TK03] Craig Tovey and Sven Koenig. Improved analysis of greedy map-

ping. In Proceedings of the International Conference on Intelli-

94

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://dx.doi.org/10.1007/978-3-319-57969-6_6
http://dx.doi.org/10.1007/978-3-319-57969-6_6
http://dx.doi.org/10.1016/s0004-3702(99)00052-1
http://dx.doi.org/10.1016/s0004-3702(99)00052-1
http://dx.doi.org/10.1016/s0004-3702(99)00052-1
https://www.rockpapershotgun.com/2017/04/05/playing-roguelikes-when-you-cant-see
https://www.rockpapershotgun.com/2017/04/05/playing-roguelikes-when-you-cant-see
http://dl.acm.org/citation.cfm?id=779343.779345
https://doi.org/10.1109/iros.2003.1249657
https://doi.org/10.1109/iros.2003.1249657


Bibliography

gent Robots and Systems, October 2003, volume 4 of IROS’03,

pages 3251–3257.

[UO14] Alberto Uriarte and Santiago Ontañón. Game-tree search over

high-level game states in RTS games. In Proceedings of the Tenth

Annual AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, October 2014, AIIDE’14. AAAI Press.

[UO15] Alberto Uriarte and Santiago Ontañón. Automatic learning of

combat models for RTS games. In Proceedings of the Eleventh

Annual AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, November 2015, AIIDE’15. AAAI Press.

[WD92] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In

Machine Learning, May 1992, pages 279–292.

[WSH+16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc

Lanctot, and Nando De Freitas. Dueling network architectures

for deep reinforcement learning. In Proceedings of the 33rd In-

ternational Conference on International Conference on Machine

Learning, New York, NY, USA, 2016, volume 48 of ICML’16,

pages 1995–2003.

[XVR14] Anqi Xu, Chatavut Viriyasuthee, and Ioannis Rekleitis. Efficient

complete coverage of a known arbitrary environment with appli-

cations to aerial operations. Autonomous Robots, 36(4):365–381,

April 2014.

[Yam97] Brian Yamauchi. A frontier-based approach for autonomous ex-

ploration. In Proceedings of the IEEE International Symposium

on Computational Intelligence in Robotics and Automation, July

1997, CIRA’97, pages 146–151.

[ZLPZ15] Yimeng Zhuang, Shuqin Li, Tom Vincent Peters, and Chenguang

Zhang. Improving Monte-Carlo tree search for dots-and-boxes

95

https://www.aaai.org/ocs/index.php/aiide/aiide14/paper/view/8960
https://www.aaai.org/ocs/index.php/aiide/aiide14/paper/view/8960
https://www.aaai.org/ocs/index.php/aiide/aiide15/paper/view/11516
https://www.aaai.org/ocs/index.php/aiide/aiide15/paper/view/11516
https://doi.org/10.1007/bf00992698
http://dl.acm.org/citation.cfm?id=3045390.3045601
http://dl.acm.org/citation.cfm?id=3045390.3045601
http://dx.doi.org/10.1007/s10514-013-9364-x
http://dx.doi.org/10.1007/s10514-013-9364-x
http://dx.doi.org/10.1007/s10514-013-9364-x
https://doi.org/10.1109/cira.1997.613851
https://doi.org/10.1109/cira.1997.613851
https://doi.org/10.1109/cig.2015.7317912
https://doi.org/10.1109/cig.2015.7317912


Bibliography

with a novel board representation and artificial neural networks.

In IEEE Conference on Computational Intelligence and Games,

August 2015, CIG’15, pages 314–321.

96

https://doi.org/10.1109/cig.2015.7317912
https://doi.org/10.1109/cig.2015.7317912


Appendix A

Combat state information

Below we describe in detail the information that makes up game state for the deep Q-

learning approach to combat. Each piece of information is described with emphasis on its

importance for combat, as well as size, type and any additional notes (such as implementa-

tion details).

Monster information

Description Two vectors indicating the monster currently being faced and its monster

class. The elements corresponding to both monster name and class are set to 1, with

others 0. If the player is hallucinating, the observed monster name/class is discarded

and instead two elements corresponding to hallucinatory monster/monster class are

set to 1 with others 0. If more than one monster is present (i.e., if the first monster

spawns a second using a special ability), the element corresponding to the second

monster name is also set to 1, while for monster class, only the class of the closest

monster to the player is set to 1 (explained below). Finally, one boolean is included

to indicate whether the monster has become invisible.

Importance Allows the agent to distinguish between different monsters in order for monster-

specific strategies to be learned. Monster class allows for strategies to be generalized
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between monsters of the same class, who often share properties (e.g., weaknesses to

certain weapons).

Notes • Monster names are retrieved by altering NetHack to automatically emit names

of monsters within visible range of the player into the top line of game output.

(A command also exists to emit the same information.) The names of peaceful

and tame monsters as well as shopkeepers are ignored during parsing.

• When multiple monsters are present, for simplicity only the class of the clos-

est monster is set to 1, since monster class is based on output glyph and it is

easier to calculate distance between glyphs on the NetHack map than it is to

get a monster position based on name. This limitation could be lifted by writ-

ing a mapping from monster name to class and then querying the class for all

monsters in range.

• Monster invisibility is determined by absence of the monster glyph on the map

while the episode has not terminated. In the full level context, invisibility is

always set to false since combat episodes terminate on absence of the monster

glyph.

Type Binary vector

Size (in units) |monsters|+ |monster_classes|+2+1

Number of monsters

Description A categorical vector indicating how many monsters are near the player: 0 for

no monsters, 1 for one monster, and 2 for two or more monsters.

Importance Allows the agent to distinguish between simple combat situations with only

one monster and more complex scenarios with more than one monster.

Notes Number of monsters is calculated by counting the number of monster glyphs within

6 spaces of the player on the NetHack map. Manhattan distance is used to reduce

computation time, but might introduce error in certain cases.

98



Type One-hot vector

Size 3

Basic character information

Description Two vectors indicating the character’s role (class) and alignment.

Importance Character role has impact on combat success in some cases (the barbarian

role is more skilled at using two-handed weapons, e.g.). Alignment has impact on

initial neutrality of certain monsters: some will not attack you if you are of a certain

alignment, allowing you to have the first attack. An extra role is added to be used if

the player is lycanthropic and has transformed into a were-creature.

Notes Role and alignment are parsed from the bottom lines of the NetHack game output.

Type One-hot vectors

Size |roles|+1+ |alignments|

Character attributes & statistics

Description Normalized 0..1 values for the following character attributes & statistics:

character level, dungeon level, hit points (health), power (mana), armor class, strength,

dexterity, constitution, intelligence, wisdom, and charisma.

Importance Each attribute/statistic can have an impact on combat. For example, strength

relates to damage output, while armor class relates to defense. Some attributes (like

intelligence or power) only have impact for certain classes (e.g., those that can cast

spells or read spellbooks).

Notes All attributes and statistics are parsed from the bottom lines of the NetHack game

output. Values are normalized to the 0..1 range using the following minimum and

maximum values:
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• Dungeon level: 0 - 30 (30 is an arbitrary number, but a higher level is not

expected to be reached).

• Character level: 0 - 30 (30 is an arbitrary number, but a higher level is not

expected to be reached).

• Hit points: 0 - maximum hit points (also parsed from the bottom lines)

• Power: 0 - maximum power (also parsed from the bottom lines)

• Armor class: -40 - 15 (limits of game values)

• Strength: 3 - 25 (limits of game values) (intermediary values from 18 to 19 are

mapped to 19-21 as indicated on [NetHack Wiki17b]).

• Dexterity, constitution, intelligence, wisdom, charisma: 3 - 25 (limits of game

values)

Type Vector

Size 11

Character status effects

Description A vector for the various status effects that a NetHack character can experi-

ence: stunned, confused, blinded, and hallucinating.

Importance Status effects can have a deleterious effect on combat (e.g., a confused player

will sometimes move in a random direction instead of the direction input by the user).

Status effects can be removed with the help of certain items (e.g., using certain scrolls

or quaffing certain potions).

Notes • Parsed from the bottom lines of the NetHack game output.

• Since hunger and weight are removed from our context, the associated status

effects (starving, burdened, etc.) are not considered here.

Type Binary vector

Size |status_e f f ects|
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Misc. player information

Description Three booleans that indicate other aspects of player state: whether they are

invisible, lycanthropic (i.e., occasionally transform into a were-creature), or have lost

health in the current combat episode.

Importance All three pieces of state have impact on combat. If the player is invisible, the

monster may be less likely to land an accurate attack. If they are lycanthropic, they

can at random times and without prior notice transform into a were-creature, which

can significantly alter combat strategy. The player having lost health can indicate the

monster is hostile rather than peaceful.

Notes Player invisibility is determined by checking if the glyph for the player is the reg-

ular ‘@’ symbol or empty “ ” symbol which represents invisibility. Lycanthropy is

recognized when either the message ‘You feel feverish’ appears in the top line of the

NetHack output (which indicates the player has contracted lycanthropy) or when the

player’s role is of a were-creature type. Lycanthropy is remembered for the rest of a

combat episode. Whether the player has lost health or not is tracked by a boolean.

Type 3 booleans

Player inventory

Description A vector corresponding to all items in the player’s inventory. Items possessed

are set to 1 with others 0. Wands have charges (number of times you can use them)

and so are represented as a 0..1 normalized value, while projectile quantity is also

normalized to the same range.

Importance The learning agent must know which items they possess in order to determine

which item actions are possible and which are impossible.

Notes Inventory state is queried at the beginning of each turn (such a query does not con-

sume a turn itself) and is sent in a special message from NetHack to the learning
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agent. The names in the message are parsed to activate the correct elements in the

vector.

Type Vector

Size |items|

Current player equipment

Description Two vectors indicating which weapon the player is currently wielding and

what pieces of armor the player is currently wearing.

Importance Weapon and armor choice are paramount for success in monster combat. Cer-

tain weapons and armor are much more effective than others, based on a wide range

of criteria, including monster type, player role and attributes, and more.

Notes Equipped weapon and armors are parsed from the NetHack inventory message de-

scribed above (wielded/worn items have a special suffix after their name).

Type Two binary vectors

Size |weapons|+ |armor|

Ranged information

Description Boolean values related to ranged weapon information: whether the player is

in the line of fire with the monster (and is thus able to direct projectiles, potions or

wands at them), whether there are projectiles lying on the floor of the current room,

and whether the player is currently standing on any projectiles.

Importance All three booleans are important for ranged combat.

Type 3 booleans

Size 3
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Player/monster distance information

Description Information related to distance between player and monster: the normalized

0..1 distance between them, whether the player or monster changed position in the

previous turn, and whether the player or monster approached each other in the previ-

ous turn.

Importance Distance is crucial to combat strategy since a far distance lets you equip

weapons/armor and throw projectiles at the monster, whereas a short distance means

a melee attack may be more useful. The boolean values indicating delta movement

in the previous turn can indicate whether the monster is capable of movement or not.

Notes Distance is normalized to the 0..1 range using 0 as minimum and the maximum line

distance in a NetHack map as maximum.

Type Vector

Size 5
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Appendix B

Combat items

In this section we list the items that can be generated in the inventory of the player

during monster combat for our combat experiments.

All items are generated as being uncursed, having no enchantment (+0) and being in

good condition, but the model does distinguish between blessed/uncursed/cursed items

(BUC status) and -1/+0/+1 enchantments if an item in the player’s inventory is changed

from an external source (e.g., monster spell) since each of these BUC/enchantment/condi-

tion combinations are represented separately in the state space and action set.

Almost all weapons and ammunition types that appear in NetHack are present here.

Artifact weapons (powerful, uniquely-occurring items) are excluded due to their power,

as well as weapons that are not randomly generated (like the tsurugi). Polearms are also

excluded due to non-trivial required implementation. In terms of usable items (potions,

scrolls, and wands), several items in each category were omitted if either not very useful

in monster combat (e.g., potion of object detection or scroll of mail), or if they require

additional string input or other implementation when used (e.g., wand of wishing, scroll of

identify, scroll of blank paper).

The full list is as follows:

Wooden weapons: elven dagger, elven short sword, elven broadsword, club, quarter-

staff, elven spear.

Iron weapons: orcish dagger, dagger, athame, knife, stiletto, axe, battle-axe, pick-axe,

dwarvish mattock, orcish short sword, dwarvish short sword, short sword, broadsword,
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long sword, katana, two-handed sword, scimitar, aklys, mace, morning star, flail, grappling

hook, war hammer, orcish spear, dwarvish spear, spear, javelin, trident, lance.

Silver weapons: silver dagger, silver saber, silver spear.

Ranged weapons: bow, elven bow, orcish bow, yumi, crossbow, sling.

Ammunition types: elven arrow, orcish arrow, silver arrow, arrow, ya, crossbow bolt.

Potions: potion of booze, potion of sickness, potion of confusion, potion of extra heal-

ing, potion of hallucination, potion of healing, potion of restore ability, potion of sleeping,

potion of blindness, potion of gain energy, potion of monster detection, potion of full heal-

ing, potion of acid, potion of gain ability, potion of gain level, potion of invisibility.

Scrolls: scroll of light, scroll of confuse monster, scroll of destroy armor, scroll of

fire, scroll of food detection, scroll of gold detection, scroll of scare monster, scroll of

punishment, scroll of remove curse.

Wands: wand of magic missile, wand of make invisible, wand of opening, wand of

slow monster, wand of speed monster, wand of striking, wand of undead turning, wand

of cold, wand of fire, wand of lightning, wand of sleep, wand of cancellation, wand of

polymorph, wand of death.

Rings: ring of protection, ring of protection from shape changers, ring of increase

accuracy, ring of increase damage, ring of invisibility, ring of see invisible, ring of free

action.

Dragon scale mail: blue dragon scale mail, black dragon scale mail, gray dragon scale

mail, green dragon scale mail, orange dragon scale mail, red dragon scale mail, silver

dragon scale mail, white dragon scale mail, yellow dragon scale mail.
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