Exploration in NetHack Using Occupancy Maps

Jonathan Campbell
School of Computer Science
McGill University, Montréal

jcampb35@cs.mcgill.ca

ABSTRACT

Roguelike games generally feature exploration problems as a critical,
yet often repetitive element of gameplay. Automated approaches,
however, face challenges in terms of optimality. This paper presents
an approach to exploration of roguelike dungeon environments. Our
design, based on the concept of occupancy maps popular in robotics,
aims to minimize exploration time, balancing coverage with resource
cost. Through extensive experimentation on NetHack maps we show
that this technique is significantly more efficient than simpler greedy
approaches. Results point towards better automation for players as
well as heuristics for fully automated gameplay.

CCS CONCEPTS

«Applied computing — Computer games; -Computing method-
ologies — Planning under uncertainty;

KEYWORDS
Roguelikes, Exploration, Occupancy Maps

ACM Reference format:

Jonathan Campbell and Clark Verbrugge. 2017. Exploration in NetHack
Using Occupancy Maps. In Proceedings of FDG’17, Hyannis, MA, USA, August
14-17, 2017, 4 pages.

DOI: 10.1145/3102071.3106345

1 INTRODUCTION

In roguelikes, a popular subset of Role-Playing Games (RPGs), explo-
ration of game space is a key game mechanic, essential to resource
acquisition and game progress, but also a major source of resource
cost. In this work we present a novel algorithm for exploration of an
unknown environment that aims for an efficient, balanced approach
to exploration, considering the cost of further exploration in relation
to the potential benefit, as well as factoring in the relative impor-
tance of different areas (rooms versus corridors). Our approach is
inspired by a variation of occupancy maps, adapted from robotics
into video games [5]. With this method we can control how the
space is explored, following a probability gradient that flows from
places of higher potential benefit.

We compare this approach with a simpler, greedy algorithm, ap-
plying both to levels from the canonical roguelike, NetHack. This en-
vironment gives us arealistic and frequently mimicked game context,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FDG’17, Hyannis, MA, USA

© 2017 Copyright held by the owner/author(s). 978-1-4503-5319-9/17/08...$15.00
DOI: 10.1145/3102071.3106345

Clark Verbrugge
School of Computer Science
McGill University, Montréal

clump@cs.mcgill.ca

with uneven exploration potential (rooms vs. corridors), critical re-

source limitations (each move consumes scarce food resources), and

anon-trivial, dungeon-like map environment. Our algorithm shows

improvement in overall efficiency compared to the greedy approach.
Specific contributions of this work include:

o We heavily adapt a known variation on occupancy maps to
the task of performing efficient exploration of dungeon-like
environments.

o Our design is backed by extensive experimental work, vali-
dating the approach and comparing it with a simpler, greedy
approach.

2 BACKGROUND & RELATED WORK

Automated exploration or mapping of an environment has been
frequently studied in several fields, primarily including robotics and
with respect to the problem of graph traversal, with the latter having
some connections to video games.

Exploration in robotics branches into many particular sub-prob-
lems. Good surveys of robotic exploration algorithms can be found
in [6] and [8]. One popular algorithm for exploring an unknown
environment is called occupancy maps. This algorithm maintains
a grid of cells over a space, with each cell representing the probabil-
ity that the corresponding area is occupied (e.g., by an obstacle or
wall). This structure offers an easy way to store observations of the
environment and determination of whether an area is impassable,
traversable, or as of yet unknown [9, 10].

A representation of the learned map must then be leveraged to
decide where to move next for efficient exploration. Yamauchi de-
scribed a strategy using occupancy maps to move towards the closest
frontier [12]. Gonzalez-Banos and Latombe discussed taking into ac-
count both distance to a frontier and the utility of that frontier (a mea-
sure of the unexplored area potentially visible from that position) [2].

Some work on exploration has also been done with respect to
video games. Chowdhury looked at approaches for computing a tour
of a known environment in the context of exhaustive exploration
strategies for non-player characters in video games [1]. Hagelback
and Johansson explored the use of potential fields to discover unvis-
ited portions of a real-time strategy game map in order to create a
better computer Al for the game [3]. Our work, in contrast, focuses
on uneven exploration in sparse, dungeon-like environments, where
complete methods compete with critical resource efficiency.

Occupancy Maps in Games. Using the aforementioned occupancy
maps from robotics as inspiration, Damian Isla created an algorithm
to search for a moving target in a video game context [4]. This algo-
rithm maintains a discretized grid of probabilities over a space (e.g.,
game map), with each probability representing the confidence of
that area containing the target. When the searcher does not observe
the target at any timestep, all cell(s) in the current field of view have

FDG’17, August 14-17, 2017, Hyannis, MA, USA

their probabilities set to 0, since there is complete confidence that
those cells do not contain the target. All probabilities in the grid then
diffuse to their neighbours, to account for the possibility that the
target has moved in unseen areas. Diffusion for each cell n at time
t is performed according to the following formula (assuming each
cell has four neighbours):

Pri(m)=(1=DP()+ 5 Z) ceighbours(m P (1)
where 1€(0,1) controls the amount of diffusion.

Our implementation of occupancy maps borrows some concepts
from Isla’s formulation, namely, the idea of diffusion, which is re-
purposed for an exploration context.

NetHack. NetHack is a popular roguelike created in 1987 and is
used as our experiment environment. Gameplay occurs on a 2D
text-based grid of size 80x20, wherein a player can move around,
collect items, fight monsters, and travel to deeper dungeon levels.
Levels in NetHack consist of large, rectangular rooms connected by
maze-like corridors and are for the most part procedurally generated.
The player starts in a random room with the rest of the map hidden,
and must explore to uncover more. An example of a typical Nethack
map is presented in Figure 1.

® [nethack

#

A
4

Merlin the Plunderer St:18/01 Dx:15 Co:18 In:8 Wi:8 Ch:7 S:0 I:4 Neutral
Dlvl:1 $:0 HP:16(16) Pw:2(2) AC:7 R:8 SD:© Exp:1

Figure 1: A game of NetHack where the player (‘@’ character, cur-
rently in the bottom-left room) has explored most of the level. A
typical NetHack map is composed of corridors (‘#’) that connect rect-
angular rooms. Room spaces () are surrounded by walls (‘" and ‘-’),
and unopened doors (‘+’), which could lead to other, unvisited rooms.
The bottom two lines contain information about the player’s current
attributes and statistics.

Movement in NetHack is turn-based (each move taking one turn),
and the more turns made, the more hungry one becomes, until star-
vation (death) occurs. Hunger can be satiated by food, randomly and
sparingly placed within the rooms of a level [11]. Since food does
not regenerate, a player must move to new levels at a brisk pace.

In this context, it is critical to minimize the number of turns spent
on exploration, in order to preserve food resources. Rooms are crit-
ical to visit since food and helpful items can be found in them, but
conversely, the corridors that connect the rooms have no intrinsic
value. Some may lead to dead-ends or circle around to already visited
rooms. Exploring all corridors of a level is typically considered a
waste of valuable actions.

Jonathan Campbell and Clark Verbrugge

3 EXPLORATION APPROACH

Here we present two algorithms: a trivial greedy approach which
guarantees complete coverage of the space, as well as a nuanced
approach based on occupancy maps, which will only visit useful fron-
tiers and do so in a specific order. First, we discuss the exploration
environment.

Environment

A modified version of NetHack is used to test our exploration algo-
rithms. Game features that might confound experiment results were
removed, including monsters, starvation, weight restrictions, and
certain dungeon features that introduce an irregular field of view.
The maps used in testing are those generated by NetHack for the
first level of the game. The same level generation algorithm is used
throughout a large part of the game so this does not limit generality,
although later levels can contain special, fixed structures.

The algorithms below use the NetHack player field of view. When
a player enters a room in NetHack, they are able to immediately
perceive the entire room shape, size, and exits (doors). In corri-
dors, knowledge is revealed about only the immediate neighbours
to the player’s current position. Our algorithms will gain the same
information.

Greedy algorithm

A greedy algorithm is used as baseline for our experiments, which
simply always moves to the frontier closest to the player. This type of
approach is often formalized as a graph exploration problem, where
we start at a vertex v, learn the vertices adjacent to v, move to the
closest unvisited vertex (using the shortest path) and repeat [7]. The
algorithm terminates when no frontiers are left. We also take into
account the properties of the NetHack field of view as described
above (when we enter a room, all positions in the room are set to
visited, and its exits are added to the frontier list).

Occupancy maps

Our main exploration strategy is similar to both the original concep-
tion of occupancy maps as a way to store information about obstacles,
as well as Damian Isla’s formulation for searching for a target. The
algorithm is designed to optimize exploration time by minimizing
amount of time spent in unhelpful areas (e.g., corridors in NetHack).

The main idea is to use the occupancy map to represent prob-
abilities of (unexplored) room presence. This formulation lets us
determine the most useful frontiers to move towards, and thus edge
an advantage over the greedy approach, which does not consider
frontier utility. We also use a form of diffusion fromIsla’s formulation
in the occupancy map, described below. Figure 2 gives a visualization
of a sample occupancy map.

Occupancy map representation. The probability of a cell in the
map represents the confidence we have in that area containing an
unvisited room. Similar to the occupancy maps of robotics, here we
set the cells of observed obstacles to 0. Specifically, whenever we see
aroom/corridor spot, we add it to our memory; at each timestep, we
set the probability of each spot in our memory to 0 in the occupancy
map. We must do this for all spots in memory at every timestep since
the diffusion step we run (detailed below) may alter them.

Exploration in NetHack Using Occupancy Maps

Figure 2: Visualization of an occupancy map corresponding to the
NetHack level of Figure 1. Darker areas are less likely to contain an
undiscovered room. The player is shown as a blue circle, and current
target frontier as blue triangle. Other frontiers are shown as green
triangles, while red triangles are frontiers that will not be visited due
to being in areas of low probability. Components with neighbouring
frontiers are highlighted in a criss-cross pattern.

Diffusion. We use diffusion for two purposes: to influence prob-
ability of a cell based on its neighbours in order to better measure
its utility, as well as to separate the occupancy map into distinct
components of high probability.

Diffusion affects the utility of a frontier. By dispersing the zero
probability of visited rooms into surrounding areas, we can more
easily identify frontiers that are close to low probability areas. We
can then ignore frontiers that are surrounded by cells of low prob-
ability (when all of the neighbours of a frontier have a probability
below a certain threshold) as seen in figure 2 (red triangles indicate
such frontiers).

For extra diffusion, we also diffuse inward from the borders of
the occupancy map. Specifically, during the diffusion step, when
updating cells that lie on the edges of the map, we treat their out-of-
bounds neighbours as cells with a fixed low probability. Diffusing
in this manner tends to increase separation of components of high
probability (since rooms/corridors rarely extend to the edge of the
map). More importantly, it lessens the utility of frontiers that lie
near the edges of the map, which are most probably dead-ends.

Diffusion is run at each timestep that a new part of the map
(room/corridor) is observed. By diffusing only at these times, prob-
abilities in the occupancy map won’t change while we are travelling
to a frontier through explored space, and neither will the length of
distance travelled have an effect. Probabilities will diffuse at the rate
that map spaces are uncovered, and stop when the map is completely
known.

Planning with occupancy maps. The knowledge inside the occu-
pancy map must now be exploited to explore alevel while minimizing
number of actions taken. The idea is to split the map into compo-
nents of high probability, choose the best component (based on
distance and/or utility), and then move to a frontier neighbouring
that component.

Splitting the map into components of high probability is per-
formed to understand which distinct areas of the map are interesting.
Components are retrieved by running a depth-first search on the

FDG’17, August 14-17, 2017, Hyannis, MA, USA

occupancy map and considering any unvisited cell with probability
above a threshold to be passable. We also consider cells that have
less than a certain number of passable neighbours to be impassable
themselves, further separating components by eliminating narrow
alleys that could otherwise connect two disparate components.
Some components are ignored due to size or neighbour limitations.
If a component is smaller than the minimum room size, it is impossi-
ble for aroom to be there. Likewise, if a component has no neighbour-
ing frontiers, it cannot contain a room since there is no access point.
To determine the most promising remaining component, an evalu-
ation function is used that considers component utility and distance
to player. Utility is calculated by summing the probabilities of all cells
in the component. (The sum is then normalized by dividing by the
sum of all probabilities in the map.) To determine distance to player,
the component is first matched to the closest frontier on the open
frontiers list (by calculating the Manhattan distance from each fron-
tier to the closest cell in the component). Distance is then calculated
as: d(frontier,player)+d(frontier,closest_component_cell) (the former
calculated using A*, and latter using Manhattan distance, since that
part of the path is unknown). This distance is then normalized by
dividing by the sum of the distances for all frontiers for the specific
component under evaluation. With the normalized utility and dis-
tance values, we pick the component that maximizes norm_prob+
a*(1—norm_dist), where a controls the balance of the two criteria.
Once the best component is determined, the algorithm moves to
the frontier matched to that component. On arrival, it will learn new
information about the game map, update the occupancy map, and run
diffusion. Components will be re-evaluated and a new target chosen.
Exploration terminates when no interesting frontiers remain.

4 EXPERIMENTAL RESULTS

Results will be shown below for the greedy and occupancy map
algorithms as a function of the exhaustive nature of their searching.
We will look first at metrics for comparison.

Exploration metrics

To evaluate the presented exploration strategies, we use as metrics
the average number of actions per game as well as average percentage
of rooms explored. To get a more fine-grained view of exploration
which penalizes incomplete room discovery on a level, we also use
a third metric which counts partially-explored map runs (runs that
fail to explore all rooms on a map) as 0 (with full exploration runs
counted as 1). We call this the ‘full runs only’ exploration metric.

Exhaustive approaches

The result for the greedy algorithm is presented in figure 3, at around
315 average actions per game to explore the complete map (i.e., ex-
ploring all rooms and corridors). The result for the fastest occupancy
map model with parameters that guaranteed exploration of all rooms
is also shown, at about 280 average actions per game.

In the same figure, the result is given for an approximately op-
timal solution, obtained by running a travelling salesman problem
solver on a NetHack map. Maps are translated to graphs with room
centroids as vertices and edges as connections between rooms. The
length of an edge corresponds to the shortest distance between the
two connected room centroids in the map. The initial vertex in the

FDG’17, August 14-17, 2017, Hyannis, MA, USA

TSP
Greedy
Occ. maps L
0 100 200 300 400

Figure 3: Average number of actions taken by the optimal solution
(TSP) and greedy and occupancy map algorithms for complete room
exploration with best performing parameters. The average over 200
runs on different randomly-generated NetHack maps is taken. Error
bars (standard deviation over all runs) are presented in red.

100

.® Lw.:?
L]
W s
Wy
< 80 ‘ o®
[L]
S L :
= a
2 60 1 s
o
[e] e
= ‘H L
s 3
o
& 40 it
€ o
8 []
@ .
a 20)0 []
L]
e @
(]
° L]
0 ‘ .
0 50 100 150 200 250 300

Number of actions taken

Figure 4: Occupancy map models with parameters that best mini-
mize average actions per game and maximize percentage of rooms
explored. Each blue dot represents the average over 200 runs using a
different combination of model parameters. The blue dots show the
result under the ‘full runs only’ metric and the corresponding black
squares show the total percentage of rooms explored.

graph is set to the player’s starting room. The TSP solution guaran-
tees exploration of all rooms (not necessarily all corridors) similar to
the occupancy map algorithm. It is an approximation to the fastest
way to explore a known NetHack map, since some time could be
saved by moving from room exit to room exit instead of centroid
to centroid. As seen in the figure, it visits all rooms in about 175
actions on average. The speed difference between it and the greedy
algorithm is a result of both inefficient exploration as well as full
corridor exploration on the part of the greedy algorithm.

Non-exhaustive approaches

Exhaustive approaches are fine in certain circumstances, but often
it’s acceptable to sometimes leave 10 or 20% of the map unexplored,
especially when there is a cost to movement. Figure 4 gives the re-
sults for the best-performing non-exhaustive occupancy map models
in terms of fastest time vs. highest room exploration. (A grid search
over the parameter space was performed — the models shown lie on
the upper-left curve of all models.)

Jonathan Campbell and Clark Verbrugge

As seen in the figure, there is a mostly linear progression in terms
of the two metrics. The relationship between the ‘full runs only’
metric and total percentage of explored rooms is also consistent,
with both linearly increasing.

The specific parameter values that led to the fastest performing
exhaustive exploration model were as follows: diffusion factor of 0.5,
border diffusion of 0.5 and probability threshold of 0. The parameters
for the fastest model at 80% non-exhaustive exploration (the full map
being explored about 30% of the time) with 175 avg. actions were:
diffusion factor of 0.5, border diffusion of 0 (smaller values diffuse
more), and probability threshold of 0.

5 CONCLUSIONS & FUTURE WORK

Automated exploration is an interesting, surprisingly complex task.
In strategy or roguelike games, the tedium of repetitive movement
during exploration is a concern for players, and offering efficient au-
tomation canbe helpful. Exploration is also a significant sub-problem
in making more fully automated, learning Al, and techniques which
can algorithmically solve exploration can be useful in allowing Al to
focus more on higher level strategy than basic movement concerns.

In this work we detailed an algorithm for efficient exploration of
an unknown environment. Inspired by the occupancy map algorithm
of robotics and the similar approach by Damian Isla, we built an algo-
rithm to select frontiers to visit when performing exploration of inter-
esting areas of a map, while also considering complete coverage. Our
design notably improves over a more straightforward, greedy design.

Our further work on the occupancy map algorithm aims to in-
crease efficiency in exploration. In particular, a ‘local’ diffusion of
probabilities instead of the current global diffusion may prove fruit-
ful. Further verification of the algorithm on other games would also
be interesting.

ACKNOWLEDGMENTS
This work supported by NSERC grant 249902.

REFERENCES

[1] Muntasir Chowdhury and Clark Verbrugge. 2016. Exhaustive Exploration
Strategies for NPCs. In Proceedings of the 1st International Joint Conference of
DiGRA and FDG: 7th Workshop on Procedural Content Generation.

[2] Héctor H. Gonzalez-Bafios and Jean-Claude Latombe. 2002. Navigation Strategies
for Exploring Indoor Environments. International Journal of Robotics Research
21,10-11 (2002), 829-848.

[3] J. Hagelback and S. J. Johansson. 2008. Dealing with fog of war in a Real Time
Strategy game environment. In Computational Intelligence in Games. 55-62.

[4] Damian Isla. 2005. Probabilistic Target-Tracking and Search Using Occupancy
Maps. In AI Game Programming Wisdom 3. Charles River Media.

[5] Damian Isla. 2013. Third Eye Crime: Building a Stealth Game Around Occupancy
Maps. (2013). Artificial Intelligence and Interactive Digital Entertainment.

[6] Miguel Julia, Arturo Gil, and Oscar Reinoso. 2012. A comparison of path planning
strategies for autonomous exploration and mapping of unknown environments.
Autonomous Robots 33, 4 (2012), 427-444.

[7] S.Koenig, C. Tovey, and W. Halliburton. 2001. Greedy mapping of terrain. In IEEE
Int Conf Robot Autom, Vol. 4. 3594-3599.

[8] S.M.LaValle.2006. Planning Algorithms. Cambridge University Press, Cambridge,
UK. Available at http://planning.cs.uiuc.edu/.

[9] Hans Moravec. 1988. Sensor Fusion in Certainty Grids for Mobile Robots. AI
Magazine 9, 2 (July 1988), 61-74.

[10] Hans Moravec and A. E. Elfes. 1985. High Resolution Maps from Wide Angle
Sonar. In IEEE Int Conf Robot Autom. 116-121.

[11] NetHack Wiki. 2016. Comestible — NetHack Wiki. https://nethackwiki.com/
wiki/Comestible. (2016).

[12] B. Yamauchi. 1997. A frontier-based approach for autonomous exploration. In
CIRA. 146-151.

https://nethackwiki.com/wiki/Comestible
https://nethackwiki.com/wiki/Comestible

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Exploration Approach
	4 Experimental Results
	5 Conclusions & Future Work
	Acknowledgments
	References

