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Abstract—The ‘“RollerCoaster Tycoon” video game involves
creating rollercoasters that optimize for various in-game metrics,
while also being constrained by the need to ensure a feasible
structure in terms of physical and spatial bounds. Creating these
procedurally is thus a challenge. In this work, we explore multiple
approaches to rollercoaster generation, including Markov chains
and machine learning and reinforcement learning algorithms. We
show that we can achieve relatively good tracks in terms of the
game’s measurement of success, and that reinforcement learning
may give more control over other factors of potential interest. A
focus on multiple measures allows our work to extend to other
factors that also mimic actual player constructions.

Index Terms—procedural content generation, machine learn-
ing, reinforcement learning, game Al

I. INTRODUCTION

Procedural content generation (PCG) is used to automati-
cally create game content such as level maps, graphics and
other constituent pieces of games. In this work, we show
the application of PCG to a part of the game RollerCoaster
Tycoon (RCT). RCT is an amusement park simulator in
which players build rollercoasters, amongst other rides. A
rollercoaster track in RCT is built one segment at a time and
must satisfy various physical properties (in terms of speed and
self-intersection); after being built it is scored by certain game
metrics that determine its popularity to simulated park guests.
The generation process is thus complex, needing to satisfy
multiple, quite disparate metric requirements, and successful
generation of RCT tracks has not been previously performed.

To generate the rollercoaster tracks, we explore four differ-
ent approaches, all of types commonly used in PCG research:
Markov chains, two machine learning algorithms (Transform-
ers and CNNs) and a reinforcement learning algorithm (PPO),
and combine each with a lookahead and backtracking sys-
tem for efficiency. The first three approaches are trained on
a dataset of pre-built tracks, whereas the fourth is trained
from scratch in a Gymnasium environment. To analyze the
generated tracks we show their scores on the in-game metrics
as well as other potentially interesting measures.

Specific contributions of this work include:
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« an approach to procedurally generate rollercoaster tracks
using different algorithms in a RollerCoaster Tycoon-like
environment,

« a suite of metrics to analyze the generated content, and

o a Gymnasium environment in which reinforcement learn-
ing experiments for PCG in RCT can be conducted.

II. RELATED WORK

Below we explore prior work done with the main types of
PCG algorithms we use. We also touch on work done in the
similar domain of racing games and other work done in RCT.

Markov chains have often been used for platformer games.
Dahlskog, Togelius & Nelson used a Markov chain based on n-
grams to generate levels for Super Mario Bros [1]. They took
vertical slices of game levels and extracted from them unigram,
bigram and trigram occurrence counts to use in generating new
levels. Snodgrass and Ontaiidén generated Mario levels one tile
at a time [2] by conditioning a tile on some of its neighbors.
They also used lookahead and fallback strategies to recover
from sampling states not present in the level dataset. Our work
similarly uses n-grams of track sequences to generate new
tracks, also using fallback and lookahead strategies tailored to
our domain. The same authors also extended their approach
to Lode Runner and Kid Icarus in a further paper [3].

Machine learning has also been used for PCG in platformer
games. Summerville and Mateas used LSTMs to generate
Mario levels [4] and found that they are better able to gen-
eralize than Markov chains. Sorochan, Chen, Yu and Guzdial
used a pipeline of LSTMs and Markov chains to generate Lode
Runner levels from training on player path data [5].

A game domain more similar to ours is racing games,
for which race tracks can be generated. Race tracks and
rollercoaster tracks are both curves on which cars are driven,
and speed of a car on the track is an important consideration.
However, race tracks are typically two-dimensional and driver
skill is a more significant factor than track physics, since racing
cars are player controlled.

Togelius, Lucas and De Nardi investigated an evolutionary
algorithm (EA) to generate race tracks [6]. They formulated
tracks as sequences of Bezier curves, with each segment
defined by two control points; mutation was done by changing
the position of the control points. Fitness metrics were player-
dependent and involved track difficulty and maximum speed.



Loiacono, Cardamone and Lanzi also used EAs to generate
race tracks [7]. They introduced additional constraints to the
track properties suggested in the above work, including that
tracks must be closed circuits with a constrained curvature
radius. Aiming to create a diversity of tracks rather than
targeting a particular player profile, they evaluated tracks based
on the entropy of their curvature and speed distribution.

Prasetya and Maulidevi used EAs to create race tracks [8],
representing a track as a sequence of segments, each with
a type, length, curve arc and radius. Their fitness func-
tion checked that the track was a closed, continuous non-
intersecting circuit, and prioritized the proportion between
curved and straight segments, the diversity of the curve arcs
and distribution of the curves, and diversity of the speeds
obtained by optimal driving at each track segment.

Reinforcement learning has also been used for PCG. Khal-
ifa, Bontrager, Earle and Togelius proposed a framework to use
RL to generate game levels [9]. Framing content generation
as an iterative improvement problem, they trained a model to
generate high-quality levels for 2D game environments such
as Sokoban and Zelda. The framework was further expanded
in a paper by Earle et al. that demonstrated how RL could
be used to generate levels that aim for particular target level
characteristics (e.g., number of crates on a Sokoban level) [10].

One paper that deals specifically with RCT is that by Cerny
Green et al., who investigated ride and shop placement in a
park in order to maximize park profit [11]. To this end, they
introduced a simplified subset of the game called MicroRCT.
Earle et al. used RL in this environment to create placements
that could maximize park income and guest satisfaction [10].

There have also been some prior attempts to generate tracks
for RCT, albeit not successful. Burke suggested the idea of
using a genetic algorithm [12], but the implementation stalled
as the game had not yet been fully reverse engineered at that
time. An RNN model combined with human input was tried
by Ebert [13], but was trained on only 34 tracks, did not take
into account self-intersections or physics and did not consider
the quality of the generated tracks.

1II. BACKGROUND

RollerCoaster Tycoon (RCT) is a series of best-selling simu-
lation games created by Chris Sawyer. We briefly describe the
game below with a focus on rollercoasters, track construction
and in-game track metrics.

RollerCoaster Tycoon & OpenRCT2

In the series, players build and manage an amusement park.
Rides, concession stalls, paths and scenery can be constructed.
Simulated guests traverse the paths, go on rides and buy from
the shops. The goal of a park can be to attain a certain
profitability or number of guests, amongst others, and a free-
play mode also exists. Figure 1 shows a game screenshot.

RollerCoaster Tycoon 2, released in 2002, remained popular
for many years, but its compatibility with modern operating
systems dwindled over time. OpenRCT2 [14], an open-source
reimplementation of the game maintained by Ted John and

Fig. 1. A screenshot of part of a player-created amusement park in Roller-
Coaster Tycoon 2. Five rollercoasters are visible, each in a different colour.
Guest pathways and trees are placed throughout. Near the bottom-right is a
garden area with concession stalls.

other fans, serves as a faithful stand-in, and we use a modified
form of it for our experiments, as discussed later.

Many different kinds of rides can be built in the game.
Some are simple and easily placeable like haunted houses,
while others, such as rollercoasters, consist of tracks that are
built one segment at a time. Players can choose out of 33
different types of rollercoasters, each with its own appearance
and subset of track elements used in construction.

We limit generation to the wooden rollercoaster type in this
work in order to limit training time. Extension to other types
would be straightforward as our dataset contains tracks of all
subtypes and our implementation supports all track elements.
We choose wooden rollercoasters in particular since they occur
most commonly in our dataset and support a wide variety of
track elements. The wooden rollercoaster (or ‘woodie’) is also
a classic from a historical point of view.

Track construction

Building a track is a complex activity in which both physics
and entertainment value must be taken into account. A track
is built by placing a sequence of track elements.

Each track element is made up of a sequence of individual
1x1x1 unit-sized pieces (or coordinates) on the 3D grid. A
track element also has a starting and ending angle, starting
and ending bank ! and change in direction. For example,
a regular flat element is made up of one piece and has no
inclination, banking or change in direction, while a curved
up-angled element may be made up of seven pieces taking
up a total size of 5x5x3 units, with a starting and ending
inclination of 25 degrees, no banking, and change in direction
of 90 degrees to the left. There also exist special elements like

A banked track piece is slightly raised on one side so that the car will
tilt down to the other side. Banked tracks are used to reduce lateral G-forces
(that cause a sensation of being pushed into the side of a car). They frequently
occur when a curve is placed after a long drop.



loops, corkscrews, helixes, water splashes, brakes and pieces
that move on the diagonal.

To construct a track, a player must place a sequence of
elements that forms a closed, non-intersecting circuit in the
three-dimensional grid. The starting angle (flat or 25/60/90
degrees) and banking (flat, left or right) of each element must
match the ending angle and banking of the previous. The
wooden rollercoaster supports 152 different track elements,
though the actual number that can be built is much lower given
this constraint. Each element also has a clearance height which
must be observed.

Speed is also a factor. After a track is built, the game runs
an empty car through it to check that it can make it to the end.
If the car does not have enough speed to make it up a hill (or
conversely goes too fast and flies off the track) and cannot
reach the end, then the track cannot be ridden by guests and
must be fixed by the player.

The great variety in the track design space, with different
ride types, track elements and physics properties thus allows
players to construct diverse coasters that give way to a wide
range of rider experience.

Excitement, intensity and nausea

Excitement, intensity and nausea (EIN) ratings are calcu-
lated following the car trial run described above. They are used
in part to determine a ride’s attractiveness to guests, and thus
profitability. Since rides cost money to build, a more profitable
ride will allow the player to further enhance their park.

Ratings are positive real numbers that usually range from 0
to 13. Generally speaking, guests will prefer the ride with the
highest excitement of a subset of rides in their vicinity. Each
guest also has a preferred intensity range, the most common
being 4 to 6, though some guests may prefer more gentle or
extreme rides. An intensity above 10 is considered too high
and will automatically penalize the ride’s excitement rating.
Guests also have a variable nausea tolerance; if the ride’s
nausea rating is too large, they will refuse to ride it. Other
factors that come into a guest’s decision include ride age, ticket
price and weather, but we do not consider these for this work
as they require a full amusement park context.

EIN ratings are determined through a complex weighted
sum of many factors which depend on the particular type of
rollercoaster. Some of the most important factors for excite-
ment for wooden rollercoasters are average speed, track length,
air-time (when riders feel lifted from their seats like they are
floating, due to negative G-forces), number of drops and of
turns, and adjacency of track elements to other parts of the
same track, park pathways, other rides and tracks of other
rides. Penalties are applied to the excitement rating if the ride
has too few segments or drops, too low a maximum speed or
maximum drop height, or excessive G-forces.

Intensity and nausea are likewise calculated using a
weighted sum of many of the same factors listed above, though
at different ratios. We omit the exact calculation as the factors
and weights are too numerous to succinctly reproduce; we
refer interested readers to the game’s code.

IV. METHODOLOGY

We present our approach for generating rollercoasters below.
We begin with a description and analysis of our dataset, fol-
lowed by details on the generation algorithms, the lookahead
and backtracking system, the work done after generation and
a discussion of track metrics.

Dataset

Some of our models require training data, so we have col-
lected a dataset of user-created rollercoaster track designs for
RCT2. Our dataset has a total of 56,278 tracks split amongst 55
different ride types including rollercoasters, mazes, go karts,
and mini-golf. The dataset is sourced from a variety of online
track archives where users can upload their creations. For our
current work, we consider the subset of 6,579 track designs
built for the wooden rollercoaster.?

The dataset has a large diversity in track designs. Some have
extreme drops and speeds, or conversely, long, monotonous
flat stretches, while others are fastidiously designed. Since
our goal is to generate ‘good’ tracks, at least by the game’s
definition, we train our generation algorithms only on those
tracks that score well on the in-game metrics. Specifically,
we filter out 2,427 tracks that have an intensity larger than
9, excitement lower than 4, or intensity larger than two times
excitement. Further, a small number of tracks (22) are removed
for being too short (< 50 pieces) or long (> 300) for a typical
ride. We thus arrive at a total of 3,230 tracks for our training
set. However, although these tracks meet the game’s definition
of success, it is not known whether they match to positive
player opinions in terms of aesthetics or other factors but,
having uploaded them, the authors are presumably proud of at
least some aspect.

We also remove all scenery (trees, fences, signs and other
landscape elements) from the tracks so that it is not a con-
founding factor in comparisons to our generated ones. Scenery
can increase the ride’s aesthetics to a player and can also have
a limited impact on the excitement rating depending on its
placement. We note that it would be trivial to decorate a track
with scenery to increase the excitement in this manner (though
likely not for player aesthetics).

Generation algorithms

Here we detail our four generation algorithms. The first
three algorithms use our dataset and will generate probabilities
for the next track element given the previous n; the fourth
(reinforcement learning) does not use the dataset. Note that
we start each track with a station platform (where guests enter
and exit the ride).

Markov chain: To use a Markov chain, we first extract from
our track dataset occurrence counts of track element sequences
of length n. Then, to generate a next piece given the previous n
pieces, we can use as probabilities the normalized occurrence
counts of those n pieces. If the previous n pieces occurred

2We hope to make this dataset available, but have not done so given that the
data is scraped from various sites leading to the need to verify permissions.



less than some threshold (set to 50 in our experiments), we
decrease n by one and try again until we reach an amount
over the threshold, so that our sample size remains adequate.
We set n to 16 in our experiments. A track piece may also
have additional properties (such as presence of chain lift,
brake speed, and so on), so we encode each combination of a
track piece and properties into a unique integer value for the
purposes of the occurrence counts.

Transformer: The sequential nature of a track leads us to
consider using a transformer. Transformers have had of late
success recently in learning tasks involving natural language
processing and sequential data [15].

Our network architecture is as follows. We take a vector
of the past n track elements and associated flags (presence of
chain lift, brake speed, etc.) and pass it through a positional
embedding layer of 128 units. We then concatenate the output
with a second input vector containing the current car speed,
lateral G-force and vertical G-force. The concatenated vector
is passed through a transformer block (with two attention
heads, embedding dimension of 128 units and fully-connected
layer of 128 units) followed by a fully-connected layer. The
network output is a vector of probabilities, one per possible
track element.

The model is trained on pairs from the dataset of sequences
of n elements and the n + 1’th piece. We set n to 8 in our
experiments.

CNN: Although tracks can be represented as a series of in-
teger embeddings (as is typical of text data in natural language
processing), here there is also a spatial element to consider.
Therefore, we introduce a second track representation: a three-
dimensional boolean grid, where a cell is activated if that
coordinate is part of the current track.

This grid alone is not sufficient to capture all the information
in a track, since it is composed not only of a sequence of
coordinates but also of angles, banks and other properties.
Therefore, we stack seven more grids on top of the coordinate
grid, each for a different track property: starting angle, ending
angle, starting bank, ending bank, chain lift, brake speed
(discretized to 16 values) and a final grid for rarer properties.
We also pass in a flat vector containing the number of track
coordinates, coordinates of the final track element, and speed
of the car at the final element.

The size of the grids must also be considered. Tracks in
general can be of length up to the size of the park but, for
cost and space efficiency, are usually built within a certain
area around the station platform. That said, tracks can still
take on many different shapes: long and thin rectangles versus
compact squares. To accommodate all sizes while keeping
training tractable, we limit our grids to size 203. We center
the grids around the coordinate of the current ending track
element to attempt to capture the most locally important part
of the track.

Our network architecture takes the eight grids and passes
them through a stack of four 3D convolutional layers with 64
filters each, while the flat vector of additional information is
passed through a fully-connected layer of 32 units. Outputs

from the two layers are then concatenated and passed through
two further fully-connected layers of 256 units and 164
units, respectively. The output of the network is a vector of
probabilities, one per possible track element.

Reinforcement learning: Reinforcement learning (RL) is
useful as a PCG method since it does not rely on pre-existing
data. Equally importantly, it can learn to maximize an objective
absent of the biases that may be lurking in existing data.

We use Proximal Policy Orientation (PPO) as our RL
algorithm and train it in a Gymnasium environment for track
generation’. Below we discuss the specifics of our environ-
ment: state and action space, network architecture, reward
function and termination condition.

Our state space is comprised of a stacked grid, as in the
above CNN approach, although here the grid size bounds
the track size, thus making the track fully observable. The
state space also includes two vectors of scalar inputs. The
first vector consists of a series of target values (normalized
between 0 and 1) for desired properties of the generated track,
and the second vector consists of the current values for the
properties. The properties include number of track segments,
maximum speed, average speed, number of drops, amount of
air-time, and excitement and intensity ratings. Target values
are each initialized randomly from a specified range at the
beginning of each episode. These vectors were suggested by
Earle et al. [10] to control the content generated from an
RL model for PCG. However, their experiments were done in
environments in which target properties could be increased or
decreased during an episode. Here, if a particular target value
is surpassed, e.g., number of drops, it may not be possible to
decrease it (since our action space does not allow for existing
track elements to be removed or altered). However, including
these vectors in state (and reward) allowed for more diverse
output of tracks.

The grids are passed through a stack of 3D convolutional
layers (with number of filters 8/16/16/16 and kernel size
dependent on grid size, ranging from 3x3x3 to 5x3x5) and
scalar vectors through a fully-connected layer (of 64 units),
before being concatenated and passed through further fully-
connected layers. The network output is a vector of length
equal to the number of possible track elements.

For reward, we use the same approach suggested by Earle et
al. [10]: the difference between the loss value of the previous
and current step. Loss is defined as the sum of the difference
between the target and current property value vector.

An episode is terminated if either the loss drops below
0.05, if more than 250 steps have been taken in the current
episode, or if the number of current track coordinates plus the
Manhattan distance from the current end of the track to the
station platform has reached a certain threshold (thus placing
a limit on the total length of a track).

Lookahead & backtracking

We combine our generation algorithms with a lookahead
and backtracking system to handle the large number of invalid

30ur code can be found at https://github.com/campbelljc/trackrl.



track element combinations.

We do a lookahead at the same time we generate probabili-
ties for the next track element. The lookahead checks available
track elements and sets the probability to zero of any that
are either incompatible with the previous piece (due to angle
or bank mis-match), would intersect with a prior piece, fall
outside of the track size boundary or would make a car’s
velocity reach zero. These checks are done using our own
rudimentary implementation of the game’s logic and physics
engine. We then set probabilities of the invalid elements to
zero before choosing the next piece to place.

If, after the lookahead search, there is no possible next piece
to place, we then backtrack by removing elements from the
end of our track, with the number dependent on an exponential
backoff starting at n” pieces (we set n to 3 in our experiments,
as it was often the case that a difficulty in placing a piece was
caused not by the previous piece but by at least a few before
it).

We note here that the combination of the lookahead and
backtracking system was essential for our reinforcement learn-
ing approach to learn. Also, to ensure that the RL agent does
not learn to backtrack infinitely (to prolong the episode and
get more reward), we give a negative reward when a backtrack
occurs equal to the sum of rewards of the backtracked steps.

Tidying up

Our generation techniques do not themselves guarantee a
closed track. After a track is generated, it must therefore be
extended to form a closed circuit that ends at the station
platform. To do so, we first add brakes to decrease speed,
then add up or down-angled pieces to reach the height of
the station platform. An Ax search is then run to find a path
to the platform. To make the search tractable, we limit track
elements to flat pieces, standard three-tile turns and ‘s-bends’
(which continue straight 4 tiles but are offset one tile to the
left or right). If pathfinding fails or takes too long (>2,000
iterations), we throw out the track. Otherwise, a final sanity
check is done by sending the track to a modified version of
OpenRCT?2 and, if the track passed the testing phase, receiving
from it the excitement, intensity and nausea ratings.

Metrics

We use several metrics to evaluate the tracks generated
by our approaches. Our primary metrics are those defined
by the game: the excitement, intensity and nausea ratings, as
discussed earlier. These are the ratings used by the simulated
guests to decide whether or not to go on a ride, and are
therefore the most salient in terms of gameplay. This situation
is perhaps unlike that of other games in which PCG is used,
where the judge of content is the actual player who is playing
the level, seeing the graphics or racing on the race track.

However, it is also possible to define track quality outside
of gameplay and instead still based on player experience. For
example, it may be the case that certain tracks score high
on the in-game ratings, but are not appealing or desirable
enough for a player to want to include them in their park.

That is, although such a track may be profitable and lead to
success in-game, part of the game is about designing a good-
looking amusement park, and therefore other, more aesthetic
factors come into play. As a first attempt at a metric to
capture something about this idea, we propose the use of visual
novelty.

Visual novelty: When riding a rollercoaster, one can see a
variety of different visual scenes: upcoming or previous parts
of the track, other rides in the park and even geographical
landmarks outside the park, if the rider is high enough.
Drawing from research in urban planning on landscape vis-
ibility analysis, which quantifies perception of a landscape
from a particular point or route [16] [17], we propose that
part of the excitement of a rollercoaster ride involves the
visual experience of the rider, and in particular, visual novelty,
meaning newly-seen aspects of one’s surroundings during the
ride. We suggest that players of RCT may take this into
account when building their tracks, even though it is not a
factor for in-game metric values.

To approximate visual novelty, we propose a simplistic
metric which measures at each track coordinate the amount
of new track of the current rollercoaster seen by the rider. We
consider only the current rollercoaster since we generate each
track individually and not in the context of a park.

Although this metric is simple, it still allows for substantial
differentiation of views. For example, for a track that starts by
climbing up a hill, at the beginning perhaps only the uphill
track in front of the rider will be visible. But when the rider
reaches the top, they may suddenly be able to see a large
amount of the coming track. We are interested in the number
of times that the rider will experience a large visual novelty.
To calculate the metric, we run a car through the track, and
at each track piece, find all the track pieces visible to the
rider within a line-of-sight cone of 120 degrees (extending in
front of the rider in two dimensions) that have not been seen
previously during the ride. (Bresenham’s line algorithm is used
to find the visible points within the cone.) We then take this
vector of counts, normalize it, and count the number of pieces
at which at least 10% of the track was newly visible.

Plagiarism: We also use plagiarism as a metric of success
for our generation approaches. Plagiarism is important to
quantify in PCG since we may want our content to be similar
to existing content, but not in large part exactly the same.
Snodgrass, Summerville & Ontafién, in a paper discussing
the effect of training data on generation of Mario levels,
introduced a plagiarism metric to analyze their output [18].
They calculated how many sequences of n vertical slices of a
generated level were also present in the training dataset. For
our domain, we report on co-occurring number of n sequential
track elements.

V. EXPERIMENTAL RESULTS

To test our generation approaches, we conduct various
experiments. We discuss the parameters used in training and
then present and discuss the results of our different approaches.



Model training

We split our dataset into training (70%), validation (15%)
and testing (15%) sets and use it to train a model for our
Transformer and CNN. Training was done for 10 epochs with
a batch size of 1024. Adam was used as optimizer with a
learning rate of 0.001. Training time for each model was
about 10 minutes. Accuracy on the test set was 0.95 for the
Transformer and 0.92 for the CNN model.

The RL model was trained using the RLIlib implementation
of PPO [19] on an M1 Max chip with TensorFlow 2 and
eight rollout workers. Training was ended when the mean
excitement of generated tracks reached a plateau, which came
at about 230,000 timesteps or about 12 hours. The following
track property ranges were used for episode initialization: 100
to 175 for track elements, 40 to 60 for maximum speed, 20 to
30 for average speed, 4 to 10 for drops, 75 to 150 for airtime,
8 (constant) for excitement and 4 to 9 for intensity.

Excitement, intensity and nausea

Tracks can in general be of a wide variety of sizes, bounded
only by the amusement park size, but practically are often
constrained for cost and space efficiency. An analysis of our
dataset found that wooden rollercoasters occupied on average a
40 by 16 rectangle, with height 35, and 252 total track pieces.
To compare our generation approaches to the dataset in a first
experiment, we use the average size as a maximum bound
and the number of track pieces as an exact bound. 1,000 tracks
were generated per approach for this and all other experiments.
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Fig. 2. Excitement, intensity and nausea ratings for the four generation
approaches with a maximum track size of 40x16x35 and 232 pieces, and
for the dataset (both the dataset used for training, and the unfiltered dataset
including tracks of any EIN value). Error bars show the standard deviation.
Note that higher excitement and lower nausea is better while the best range
for intensity is between 4 and 6.

Figure 2 shows the excitement, intensity and nausea ratings
as determined by the game for our four approaches and for
the dataset. We can observe that the generated tracks for all
approaches come close in all three ratings to the dataset’s. Note
that the standard deviation is lower for the dataset since tracks
of low excitement or high intensity were explicitly filtered
out so that our models could train on higher-quality data. We

also include in the figure the ratings for the unfiltered dataset,
which confirms that the filtering process reduced the variance.

All four approaches also have a tendency to sometimes
produce tracks with intensities greater than 10 which are
too extreme for guests. We corrected this issue in a further
experiment by adding an additional constraint to the generation
phase. The resulting trends for EIN ratings (not shown) were
very similar except for a lower intensity and smaller variance.

We also run a second experiment to investigate the role
of height in ratings. For each of our four approaches, we
generate tracks in a square of maximum size 20x20 with 135
track pieces and a height of 10, 20 or 30. Figure 3 shows
the excitement ratings for each approach and height value and
figure 4 shows the intensity ratings. A different RL model was
trained for each height.

As can be seen in both graphs, height has a significant
impact on the ratings. In particular, when height is limited
to 10 units, excitement and intensity are lower than their base
ratings (3.2 and 2.6, respectively). Ratings are penalized by the
game when a track has a low number of drops, low maximum
drop height, or low maximum speed, all of which can be
impacted by maximum track height.
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Fig. 3. Excitement ratings for the generation approaches with maximum track
size of 20x20x10, 20x20x20 and 20x20x30 and 135 pieces. Error bars show
the standard deviation. Higher excitement is better.

It can also be seen that the Markov, Transformer and CNN
approaches fared worse than the RL approach. The former
three were trained on our dataset which had very few tracks
of low height (only 5% of its tracks had below 20 height, and
none below 10 height), and therefore could not easily adapt to
the size bound. By contrast, the RL approach did not use the
dataset and instead sought to maximize its reward via (in part)
the target values of excitement and intensity. The RL approach
in particular did better with height of 20 for excitement than
approaches for any height. As can be seen by the standard
deviations for the height of 30, intensities with height of 30
can sometimes go over 10 (which leads to a large decrease in
excitement), whereas height of 20 has less possibility to do the
same, which may explain why the RL did best at that height. A
sample high excitement and low height track generated from
our RL approach is shown in figure 5.
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Fig. 4. Intensity ratings for the generation approaches with maximum track
size of 20x20x10, 20x20x20 and 20x20x30 and 135 pieces. Error bars show
the standard deviation. The best range for intensity is between 4 and 6.

Fig. 5. An RL-generated track with EIN rating 6.63, 7.72 and 4.85. Note that
the curvy section on the right side is the part created by the Ax algorithm to
complete the track circuit.

Beyond the metric scores, a manual inspection of generated
tracks revealed certain issues. Some tracks were found to
contain long stretches of flat segments at high elevation, which
may be monotonous for riders and (at least in the real world)
unnecessarily costly. One track, shown in figure 6, exhibited a
very unusual property. The track begins with the car going up
a hill with a chain lift, followed by a camera that takes photos
of the riders and then a further hill. However, the car does not
have the speed to get past the first piece of the latter hill, as
it is missing a chain lift. The car thus starts to fall back until
it reaches the chain lift of the previous hill, at which point it
regains speed and begins to zig-zag between the two hills (and
camera) for several minutes, until finally building up enough
speed due to a quirk in the game’s physics engine to continue
up the second hill.

Figure 7 shows an example of a track with an intensity
rating too extreme for guests. The intensity derives from the
series of curves after the final drop on the right-hand side.
The curves are not banked and the car takes them at a high
speed, leading to a high lateral G-force experienced by the
rider. However, if banking is added to the curves, the ride’s
intensity falls below 10, removing the excitement penalty. We
note that a post-processing step for automatic curve banking
may help temper these kinds of tracks.

Fig. 6. Another RL-generated track, with EIN rating 6.50, 7.65 and 4.45.
The ride begins at the station platform in the lower left.

Fig. 7. A track generated by the Transformer model, with EIN rating 1.55,
15.14 and 9.39.

Other metrics

Figure 8 shows the amount of plagiarism in our generated
approaches, i.e., the percentage of track element sequences of
length n that are also present in the dataset. We can note that
the RL approach has significantly less of the same kinds of
sequences contained in the dataset than the other approaches.
This result is expected since the RL approach learns from
scratch whereas the others were trained on the dataset.

The figure also shows the plagiarism for the dataset itself.
It is computed by taking each individual dataset level and
comparing it to all other dataset levels, then averaging as usual.

Results for our visual novelty metric are shown in Figure 9.
As stated previously, tracks in our dataset may or may not map
to ‘good’ rollercoasters in terms of rider experience or player
opinion. The figure shows that the dataset scores highest on
the metric, followed by the CNN approach, with the other
three about tied, though the standard deviations are large. This
metric is not a factor in the game, so it is not taken into account
by guests when choosing a ride to go on. However, the results
suggest that the novelty metric may capture something inherent
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Fig. 8. Percentage of track element sequences that are present in the dataset,
for sequences of length 1 to 30, averaged over all tracks generated from each
approach for all experiments (4,000 each).
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Fig. 9. Visual novelty metric scores for the four generation approaches with
a maximum track size of 40x16x35 and 232 pieces and the dataset. Error bars
show the standard deviation.

in the user-created tracks that is missing in our generated
approaches.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described an approach to procedural
content generation of rollercoaster tracks in the video game
RollerCoaster Tycoon. We proposed four generation algo-
rithms (Markov chain, Transformer, CNN and reinforcement
learning) combined with a lookahead and backtracking system.
All algorithms worked well to produce tracks similar in terms
of in-game metrics to those in a collected dataset of user
tracks, while only reinforcement learning was able to adapt to
the imposition of a low maximum height. The latter algorithm
also tended to produce tracks containing sequences more
different to those in the dataset than the other algorithms.
Finally, we suggested a metric for visual novelty to aid in
analysis of tracks.

A next step for this work could include generation using
evolutionary algorithms (possibly by formulating the search
space as a graph) or vision transformers. Other possibilities
include extension of the RL reward function to complete
the track circuit automatically, exploring further metrics to
differentiate between tracks and conducting a user study
to evaluate the proposed visual novelty metric. Finally, our
methodology, including the use of reinforcement learning to
generate constrained track sequences as well as the concept

of visual novelty, could be repurposed for other sequential
domains such as racing games.
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