
IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, XXX 202X 1

Procedural generation of rollercoasters
Jonathan Campbell and Clark Verbrugge

Abstract—The “RollerCoaster Tycoon” video game involves
creating rollercoaster tracks that optimize for various game met-
rics while also being constrained by the need to ensure a feasible
structure in terms of physical and spatial bounds. Creating these
procedurally is thus a challenge. In this work, we explore multiple
approaches to rollercoaster track generation through the use of
Markov chains and various deep learning methods. We show
that we can achieve relatively good tracks in terms of the game’s
measurement of success, and that reinforcement learning allows
for more control of the generated tracks and for different rider
experiences. A focus on multiple measures allows our work to
extend to other track properties drawn from real-world research.
This paper extends a previous publication by adding a new
reward function for our reinforcement learning agent as well
as further analyses of the generated tracks, including a metric
measuring rider excitement over time, a revised novelty metric
and an analysis of controllability.

Index Terms—procedural content generation, machine learn-
ing, reinforcement learning, game AI

I. INTRODUCTION

Procedural content generation (PCG) is used to automati-
cally create game content such as level maps, graphics and
other constituent pieces of games. In this work, we show the
application of PCG to a part of the game RollerCoaster Tycoon
(RCT), an amusement park simulator in which players build
rides such as rollercoasters. A rollercoaster track in RCT is
built one segment at a time and must satisfy various physical
properties in terms of speed and self-intersection; after being
built it is scored by metrics to determine its popularity with
simulated park guests. The generation process is thus complex,
needing to satisfy multiple and disparate metric requirements.
Successful generation of RCT tracks has not previously been
performed.

To generate rollercoaster tracks, we explore four different
approaches, all of types commonly used in PCG research:
Markov chains, two machine learning algorithms (Trans-
formers and CNNs) and a reinforcement learning algorithm
(Proximal Policy Optimization). The first three approaches are
trained on a dataset of pre-built tracks while the fourth is
trained from scratch. To analyze the generated tracks we score
them on the in-game metrics as well as on other measures
including excitement and novelty over time.

Specific contributions of this work include:
• an approach to procedurally generate rollercoaster tracks

using different algorithms in an RCT-like environment,
• a suite of metrics to analyze the generated content, and

This work was supported by the Fonds de recherche du Québec.
J. Campbell and C. Verbrugge are with the School of Com-

puter Science, McGill University, Montréal, Québec, Canada (e-mail:
jonathan.campbell@mail.mcgill.ca, clump@cs.mcgill.ca).

• a Gymnasium environment in which reinforcement learn-
ing experiments for PCG in RCT can be conducted.

This work builds on a previous publication wherein we
described the basic PCG approaches [1]. Here we significantly
extend that work with a new reward function for our rein-
forcement learning approach which improves the quality of the
generated tracks, two new metrics to provide additional insight
into track properties and additional analysis of the tracks that
show the controllability of our approach.

II. RELATED WORK

Below we explore prior work done with our selected PCG
algorithms. We also touch on work done in the similar domain
of racing games and other work done in RCT.

Markov chains have often been used for platformer games.
Dahlskog, Togelius & Nelson used a Markov chain based on
n-grams to generate levels for Super Mario Bros [2]. They
took vertical slices of game levels and extracted from them
occurrence counts to use in generating new levels. Snodgrass
and Ontañón generated Mario levels one tile at a time [3] by
conditioning a tile on some of its neighbors, and extended their
approach to Lode Runner and Kid Icarus in a further paper [4].
They also used lookahead and fallback strategies to recover
from sampling states not present in the level dataset. Our work
similarly uses a Markov chain of n-grams of track sequences
as one way to generate new tracks, in our case conditioned on
the past n track pieces instead of grid neighbours, and also
using fallback and lookahead strategies tailored to our domain.

Machine learning has also been used for PCG in platformer
games. Summerville and Mateas used LSTMs to generate
Mario levels [5] and found them better able to generalize
than Markov chains. Sorochan, Chen, Yu and Guzdial used
a pipeline of LSTMs and Markov chains to generate Lode
Runner levels from training on player path data [6].

A game domain more similar to ours is that of racing games
and their race tracks. Race tracks and rollercoaster tracks are
both curves on which cars are driven, and speed of a car on
the track is an important consideration in both. However, race
tracks are typically two-dimensional and thus player driving
skill is a more significant factor than track physics.

Togelius, Lucas and De Nardi investigated an evolutionary
algorithm (EA) to generate race tracks [7]. They formulated
tracks as sequences of Bezier curves, with each segment
defined by two control points; mutation was done by changing
the position of the control points. Fitness metrics were player-
dependent and involved track difficulty and maximum speed.
Loiacono, Cardamone and Lanzi also used EAs to generate
race tracks [8]. They introduced additional constraints to the
track properties suggested in the above work, including that
tracks must be closed circuits with a constrained curvature...



2 IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, XXX 202X

radius. Aiming to create a diversity of track designs rather
than targeting a particular player profile, they evaluated tracks
based on the entropy of their curvature and speed distribution.

More recently, reinforcement learning has also been applied
to PCG. Khalifa, Bontrager, Earle and Togelius proposed a
framework to use RL to generate game levels [9]. Framing
content generation as an iterative improvement problem, they
trained a level generator for 2D game environments like
Sokoban and Zelda. In a further paper, Earle et al. showed
how the approach could generate levels aiming for particular
characteristics (e.g., number of crates on a Sokoban level) [10].
Level generation is typically a forgiving environment for PCG
since any one generated tile may not make or break the quality
of the entire level and, similarly, there is typically a small
action space to explore (e.g., in Sokoban, a tile can typically
only be a boulder, wall or empty space). A rollercoaster track
is a much more constrained setting for PCG in which a single
piece (out of a large number of possibilities) could have
large ramifications either immediately or much later on in the
generation process, leading to different challenges.

In terms of RCT specifically, Cerny Green et al. studied
ride and shop placement to maximize profit in a simplified
subset of the game [11]. Earle et al. used RL in this same
environment to create placements that could maximize park
income and guest satisfaction [10].

There have also been prior (unsuccessful) attempts to
generate tracks for RCT. Burke suggested using a genetic
algorithm [12], but the implementation stalled as the game
had not yet been fully reverse engineered at that time. Ebert
tried an RNN combined with human input [13], but it was
trained on only 34 tracks and did not take into account self-
intersections, physics or the quality of the generated tracks.

Part of our work quantifies the visual novelty seen by a
rollercoaster rider. This line of research draws from work
in urban planning on landscape visibility analysis, which
quantifies perception of a landscape from a particular point
or route [14] [15]. Novelty has also been explored in tourism
and hospitality research. In particular, Chang, Shu and King
study novelty in theme parks and conclude in part that novelty
of physical surroundings has a positive effect on guests’
perception of the theme park [16]. Novelty was assessed in
terms of facility aesthetic (building architecture, size, colour
schemes, etc.) and ride layout and placement. However, they
did not assess a rider’s experience of novelty during a ride.

We also explore in our work a metric for the excitement
experienced by a rider over time. Bastiaansen et al. measured
the emotional arousal (a possible correlate for excitement) of a
virtual reality rollercoaster rider by recording skin conductance
responses. They found in part that responses increased during
accelerations and end braking [17], but that the data could not
predict final rider evaluation.

III. BACKGROUND

RollerCoaster Tycoon (RCT) is a series of best-selling
amusement park simulation games created by Chris Sawyer.
Rides, concession stalls, paths and scenery can be constructed.
Simulated guests traverse the paths, go on rides and buy from

the shops. Figure 1 shows a game screenshot. Many kinds of
rollercoasters can be built in the game; we limit this paper
to generation of wooden rollercoasters, the most common
rollercoaster type. For a more detailed discussion of the game,
our original paper may be consulted [1].

Fig. 1: A screenshot of part of a player-created amusement
park in RCT2. Five rollercoasters are visible. Guest pathways
and trees are placed throughout. Near the bottom-right is a
garden area with concession stalls.

RollerCoaster Tycoon 2, released in 2002, remained popular
for many years, but its compatibility with modern operating
systems dwindled over time. OpenRCT2 [18], an open-source
reimplementation of the game maintained by Ted John and
other fans, serves as a faithful stand-in, and we use a modified
form of it for our experiments, as discussed later.

In OpenRCT2, as in RCT2, a rollercoaster is built by placing
a sequence of track segments. The sequence must form a
closed, non-intersecting circuit on the three-dimensional grid.

Fig. 2: Some common track segments in RCT2. Some seg-
ments occupy a 1x1 square while others consist of multiple
pieces. Each segment is separated by an empty space for
visualization purposes, but in a real track would be connected.



CAMPBELL & VERBRUGGE: PROCEDURAL GENERATION OF ROLLERCOASTERS 3

There are 152 wooden rollercoaster track segments. Each
is made up of a sequence of individual unit-sized pieces and
has some combination of a starting and ending angle (flat or
25/60/90°), starting and ending bank (flat, left or right) and
change in direction. Certain segments can also optionally have
a chain lift which can pull cars up a hill. Figure 2 shows some
common segments.

When placing a segment, its starting angle and banking must
match the ending angle and banking of the previous; each
segment also has a clearance height which must be observed.
Speed is also a factor. The physics of a track must allow a
car to make it up every hill, while at the same time not go
so fast that it flies off the track. G-forces are also calculated;
their importance will be discussed later.

Building a track is a complex process in which both physics
and amusement value must be considered. At the same time,
the great variety in the track design space with numerous track
segments and physics properties allows players to construct
coasters that give way to a wide range of rider experience.

IV. METHODOLOGY

We present our approach for generating rollercoasters below.
We begin with a description and analysis of our dataset,
followed by details on how we represent tracks, our generation
algorithms, the lookahead and backtracking system, track cir-
cuit completion and testing, and a discussion of track metrics.

A. Dataset

Our generation approaches, with the exception of reinforce-
ment learning, require training data, so we have collected
a dataset of user-created rollercoaster tracks for RCT2. Our
dataset has a total of 160,214 tracks split amongst 87 different
ride types including rollercoasters, mazes, go karts, and mini-
golf. The dataset is sourced from a variety of online track
archives where users can upload their creations. Sources for
the dataset are available at our GitHub repository1. For our
current work, we consider the subset of 10,814 tracks built
for the wooden rollercoaster.

The dataset has a large diversity in track designs. Some
have dire drops and speeds, or conversely, long, monotonous
flat stretches, while others are fastidiously designed. Since
our goal is to generate ‘good’ tracks, at least by the game’s
definition, we select only those tracks that score well on the
in-game metrics. Specifically, we exclude duplicate tracks,
tracks which did not run in-game due to construction error,
tracks with intensity larger than 9, excitement lower than 4
or intensity larger than two times excitement, and excessively
short or long tracks. We thus arrive at a total of 4,824 tracks
for our training set. However, although these tracks meet the
game’s definition of success, it is not known whether they
match to positive player opinions in terms of aesthetics or
other factors. (But, having uploaded them, the authors are
presumably proud of at least some aspect.)

An analysis of the training set finds that its tracks contain
all possible wooden rollercoaster track segments, but not at
the same frequency. As may be expected, segments that are
used in common building patterns (e.g., hills and slopes) are

much more common than more situational ones. For example,
a standard 25-degree upward segment occurs as 16.86% of
all segments, while a 3-tile right-quarter turn segment angled
down 25 degrees and ending on a right bank occurs as only
0.01% of all segments. It is thus expected that models trained
on this dataset will not adequately understand the use cases of
this and other low-occurring segments, though such segments
have use in very few construction scenarios and may be
important more for aesthetics.

Tracks in the training set occupy on average a 40 by 18
rectangle with height 35, and contain an average of 262 total
track pieces (with a standard deviation of 88.7).

B. Track representations

We use three different kinds of track representations for our
generation algorithms: integer, grid and piece-based.

In a simple representation, each track segment is mapped
to two integers: one describing its type and the other for
special properties (e.g., presence of a chain lift or brake speed).
A sequence of these integer pairs forms a full track. The
geometry of the track is thus not represented. Our Markov
chain and Transformer approaches use this representation.

For a more spatial representation, we encode tracks into a
series of eight three-dimensional grids. The first grid indicates
whether a cell is occupied by a track piece; seven further grids
are used to capture the properties of a piece: starting angle,
ending angle, starting bank, ending bank, chain lift, discretized
brake speed and a final grid for rarer properties. An example
of one of these grids (the starting bank) can be seen in Figure 7
b). Our CNN and RL approaches use this representation.

The size of the grids must also be considered. Tracks can
be of any length up to the size of the park but, for cost and
space efficiency, are often built within a certain area around
the station platform. To accommodate all sizes while keeping
training tractable, for our dataset we limit grids to size 203,
and centre them around the end of the current track to attempt
to capture the most locally important information.

Combined with either the integer or grid-based representa-
tion, we can obtain a finer level of detail by using sequences
of unit-sized pieces instead of segments. Although the game
displays and constructs tracks as sequences of segments,
internally the game divides them into individual unit-sized
pieces. This representation has the advantage of allowing for
more discretized calculations of track ratings and physics for
each single piece, required for our linear reward RL approach.

C. Generation algorithms

Here we detail our generation algorithms, which generate
probabilities for the next track segment given the previous n.
Tracks will start with a pre-built station platform, where guests
enter and exit.

Markov chain: For this approach, we extract from our track
dataset occurrence counts of track segment sequences of length
n encoded in the integer representation. Then, to generate a
next segment given the previous n, we can use as probabilities
the normalized occurrence counts of those n segments.



4 IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, XXX 202X

With a large n, and thus large sequence of segments, it is
likely that we will end up generating a near exact replica of a
dataset track. Therefore, to maintain an adequate sample size
while capturing as much of the past track as we can, we set n
to a high number initially (32, the same as our next approach)
and then decrease it until the sequence of n pieces occurs at
least a certain number of times (set to 50 in our experiments,
a relatively arbitrary value which could be fine-tuned).

Transformer: The sequential nature of a track leads us to
use a transformer. Transformers have of late had great success
in learning tasks involving sequential data [19].

For our network architecture, we take a vector of the past n
track segments encoded in the integer representation and pass
it through a positional embedding layer of 128 units. We then
concatenate the output with a second input vector containing
the current car speed and G-forces. The resulting vector is
passed through a transformer block (with two attention heads,
embedding size of 128 units and fully-connected layer of 128
units) followed by a fully-connected layer. The network output
is a vector of probabilities, one for each track segment.

The model is trained on pairs from the dataset of sequences
of n segments to predict the n+1’th segment. We set n to 32
in our experiments so that training time would be tractable.
Class weighting is used to offset the imbalance in frequency
of track segments present in the dataset.

CNN: We use a convolutional neural network to train on
our grid-based track representation. Our network takes two
inputs: the stack of eight grids and a flat vector containing the
number of track pieces, coordinates of the final track segment,
and speed of the car at the final segment.

The eight grids are passed through a stack of four 3D
convolutional layers with 64 filters each, while the flat vector
of additional information is passed through a fully-connected
layer of 32 units. Outputs from the two layers are then
concatenated and passed through two further fully-connected
layers of 256 units and 164 units, respectively. The output of
the network is a vector of probabilities, one per possible track
segment. Class weighting is also employed here.

Reinforcement learning: We use Proximal Policy Optimiza-
tion (PPO) as our RL algorithm and train it in a Gymnasium
environment for track generation1. Below we discuss the
specifics of our environment: state and action space, network
architecture, termination condition and reward functions.

Our state space is comprised of a stacked grid, as in the
CNN approach, though here the grid fully captures the track
so that the state is fully observable. The state space also
includes two real-valued vectors. The first vector consists
of a series of target values (normalized between 0 and 1)
for desired properties of the generated track, and the second
vector consists of the current values for said properties. The
properties include number of track pieces, maximum speed,
average speed, number of drops, amount of air-time, and
excitement and intensity ratings. Target values are each initial-
ized randomly from a specified range at the beginning of each
episode. These vectors were used by Earle et al. [10] to control
the content generated from an RL model for PCG. Their

1Our code can be found at https://github.com/campbelljc/trackrl.

experiments were done in games in which target properties
could both increase and decrease in an episode. Here, certain
properties (such as number of drops) can only increase and
not decrease, since our action space does not allow for track
segments to be removed; thus, it is likely that learning to
attain these targets will be more difficult. However, using these
vectors generated more diverse tracks.

The grids are passed through a stack of four 3D convolu-
tional layers (with filters 8/16/16/16 and kernel size dependent
on grid size, ranging from 3x3x3 to 5x3x5) and real-valued
vectors through a fully-connected layer (of 64 units), before
the two are concatenated and passed through further fully-
connected layers. The action space is a vector of length equal
to the number of possible track segments (152). As we note in
the following subsection, we mask the action space to handle
invalid actions.

An episode is terminated when the number of current track
pieces plus the Manhattan distance from the current end of the
track to the station platform has reached a certain threshold
(thus placing a limit on the total length of a track).

We base our reward function on that used by Earle et
al. [10]: the difference between the loss value of the previous
and current step. Loss is defined as the sum of the difference
between the target and current vector of track properties.

This reward function will lead to tracks that maximize
excitement as early as possible in the ride. Since excitement
can saturate after a certain amount, the excitement over time
for generated tracks will likely thus stagnate after reaching its
maximum, and the rest of the track may be more monotonous.
To attempt to generate tracks with a more consistent excite-
ment over time, we present a second reward function which we
call the linear reward function. Here, we modify the reward by
setting our target properties at each timestep to be proportional
to the current number of pieces built. That is, at the beginning,
our target excitement rating (amongst others) will be zero,
while at the end of the track, the targets will have been scaled
up to their full values. Excitement will thus be rewarded as
long as not too much is gained at once. We use the unit-
sized piece track representation for this reward function since
it relies on the amount of excitement gained at each timestep.

D. Lookahead & backtracking

We combine our generation algorithms with a lookahead
and backtracking system to handle the large number of invalid
track segment combinations. A lookahead search determines
which segments can connect to the current end of the track.
Using a rudimentary implementation of the game’s logic and
physics engine, compatibility of the angles and banks, self-
intersection and negative speed are all checked. The proba-
bilities for these segments are set to zero. Given the large
number of invalid segments at any timestep, this form of
action masking, a common practice to increase RL learning
efficiency [20], was essential for our RL agent to learn.

If, after the lookahead search, no segments can be placed,
then we backtrack by removing segments from the end of
the track, with the number based on an exponential backoff
starting at n0 pieces. We set n to 3 in our experiments, since

https://github.com/campbelljc/trackrl


CAMPBELL & VERBRUGGE: PROCEDURAL GENERATION OF ROLLERCOASTERS 5

difficulty in placing a piece is often caused not by the last
segment but by at least a few preceding it. To ensure that our
RL agent does not learn to backtrack infinitely (to prolong
the episode and get more reward), we give a negative reward
when a backtrack occurs equal to the sum of rewards of the
backtracked steps.

E. Track circuit completion and testing

Tracks must form a closed circuit that begins and ends
at the station platform, but our generation techniques do not
guarantee this property. Therefore, after generating a track of a
specified length, an A∗ search is run to bring the track back to
the platform. Brakes are added first to decrease speed followed
by a drop to reach the ground; the search then uses flat pieces,
standard three-tile turns and ‘s-bends’ (which continue straight
four tiles and end offset one tile to the left or right) to find its
way back. If pathfinding fails or takes too long, we throw out
the track. Otherwise, a final sanity check is done by sending
the track to a modified version of OpenRCT2. We note that
the number of additional track pieces added by A∗ was found
in our experiments to be very consistent on average, and its
contribution to a track’s ratings to also be consistent and
limited.

F. Metrics

We use several metrics to evaluate the tracks generated by
our approaches. We begin with those defined by the game,
followed by controllability, plagiarism and two tailored for
our domain: novelty and excitement over time.

Excitement, intensity and nausea: Our primary metrics are
those defined by the game: the excitement, intensity and
nausea (EIN) ratings. These are used in part to determine a
ride’s popularity with guests (and thus profitability), and are
therefore the most salient in terms of gameplay. EIN ratings are
positive real numbers that usually range from 0 to 13. They are
determined through a weighted sum of different ride physics
factors, such as speed and G-forces, though each factor caps at
a maximum level so as to not dominate the others. Generally
speaking, guests prefer rides with higher excitement and lower
nausea. Each guest also has a preferred intensity range, the
most common being from 4 to 6. We offer a more detailed
discussion on ride ratings in our original paper [1].

Controllability: Controllability is an important property in
PCG. We will analyze the controllability of our RL approach
by defining certain fixed sets of target properties: one with
more gentle values (lower airtime, lower speed, etc.) and one
with more intense values. We will then generate tracks given
these two sets (instead of varying the targets within their
ranges at the start of each episode) and compare the properties
of the resulting tracks to the targets.

Plagiarism: We also use plagiarism as a metric of success.
Plagiarism is important to quantify in PCG since we do not
want our content to exactly reproduce the dataset. Snodgrass,
Summerville & Ontañón, in a paper discussing the effect
of training data on generation of Mario levels, introduced a
plagiarism metric to analyze their output [21]. They calculated
how many sequences of n vertical slices of a generated level

were also present in the training dataset. For our domain, we
report on co-occurring number of n sequential track segments.

Visual novelty over time: Although EIN ratings are the most
important for gameplay, it is also possible to define the quality
of a track based on other factors. For example, even if a track
scores high on the in-game metrics, it may not be appealing
enough for a real guest to want to ride it. To attempt to capture
something beyond the in-game metrics, we propose the use of
visual novelty over time (and later, excitement over time).

A rider on a rollercoaster will see a variety of visuals:
upcoming or past parts of the track, other rides in the park and
part of the geography in or outside the park. Drawing from
work in urban planning on landscape visibility analysis, we
propose that part of the excitement of a rollercoaster involves
the visual experience of the rider, and in particular, visual
novelty, meaning newly-seen aspects of one’s surroundings.

To approximate visual novelty of a track, we propose a
simplistic metric which counts at each track piece the amount
of new track of the current rollercoaster seen by the rider. To
calculate the number of newly visible pieces, we find, at each
track piece, all the track pieces visible to the rider within a
line-of-sight cone of 120 degrees (extending in front of the
rider in two dimensions) that have not been seen previously
during the ride. Bresenham’s line algorithm is used to find
the visible points within the cone. Then, to compare the
visual novelty between tracks of different sizes, we take the
curve of cumulative number of new points seen over time
and simplify to the highest common minimum number of
equidistant points. We then calculate the mean curve of tracks
from each approach.

This metric is different from the one suggested in our orig-
inal paper, which compared the number of times at which at
least 10% of the track was newly visible. This new formulation
better captures the totality of the novelty of a track by taking
the mean curve over all pieces, not just at certain points.

Excitement over time: In order to investigate our linear
reward RL approach, we define a new metric to calculate the
excitement of a rider over time. Although, like visual novelty,
excitement over time has no in-game impact, it represents an
aesthetic consideration that a designer may consider in creating
a more realistic track: a ride that starts out very exciting but
then quickly turns monotonous has less appeal than one that
slowly builds in excitement throughout the ride.

Excitement in RCT can plateau, since many of its factors
saturate to maximum values; therefore, it may not be the
best game analogue for this metric. However, it is arguable
that excitement in real life may also plateau or, at least, that
diminishing returns may apply (e.g., a rider may find each
subsequent drop less exciting than the last). Thus, it can still
be instructive to weigh a ride’s excitement rating over time.

To compare excitement over time between tracks of different
sizes and approaches, we perform the same processing as for
our novelty curves above. To further analyze this metric, we
cluster the excitement curves. Curves can be clustered using
a path distance metric such as the Fréchet distance [22]–[24];
we do so here and use a k-means clustering algorithm.



6 IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, XXX 202X

V. EXPERIMENTAL RESULTS

To test our generation approaches, we conduct various
experiments. We discuss the parameters used in training and
then present and discuss the results of our different approaches.

A. Model training

We split our dataset into training (70%), validation (15%)
and testing (15%) sets and use it to train a model for our
Transformer and CNN. Training was done for 10 epochs with
a batch size of 1024. Adam was used as optimizer with a
learning rate of 0.001. Training time for each model was
about 30 minutes. Accuracy on the test set was 0.95 for the
Transformer and 0.91 for the CNN model.

The RL model was trained using the RLlib implementation
of PPO [25] on an M1 Max chip with TensorFlow 2 and
eight rollout workers. Training was ended when the mean
excitement of generated tracks reached a plateau, which came
at about 192,000 timesteps or about 4 hours. Hyperparameter
values included 5e-6 for learning rate, 0.4 for clip parameter,
1.2 for value function loss coefficient, 0.16 for KL coefficient
and 0.01 for KL target, all determined through a grid search
in a smaller-sized environment.

The track property ranges used for RL episode initialization
were 30 to 50 for maximum speed, 15 to 25 for average speed,
6 to 10 for drops, 60 to 120 for airtime, 10 (constant) for
excitement and 4 to 6 for intensity. These were calculated
partly based on the average values for our dataset, then lowered
to make less intense (and thus more popular) tracks. For
example, there were about 10 drops on average in a dataset
track; we chose a range from 6 to 10. Similarly, the average
intensity for dataset tracks was 8.1, whereas we chose a range
from 4 to 6 (the most common preferred intensity range).

B. Excitement, intensity and nausea

Tracks can in general be of a wide variety of sizes, bounded
only by the amusement park size, but practically are often
constrained for cost and space efficiency. To compare our
generation approaches to the dataset in a first experiment, we
use the average size of a dataset track (40x18 with height 35)
as a maximum bound and the average number of track pieces
of a dataset track (262) as an exact bound. 1,000 tracks were
generated per approach for this and all other experiments.

Further, in testing, most approaches had a tendency to
sometimes produce tracks with intensities too extreme for
guests (greater than 10). We corrected this issue by adding
an additional constraint to the generation phase to prevent
segments from being placed that would cause the intensity
to increase past 10. Testing confirmed that this fix eliminated
the clusters of tracks with these intensities.

Figure 3 shows the excitement, intensity and nausea ratings
for our generation approaches and the dataset. We can observe
that the generated tracks for all approaches come close in all
three ratings to the dataset. Note that the confidence intervals
are tighter for the dataset since tracks of low excitement or
high intensity were explicitly filtered out. We also include in
the figure the ratings for the unfiltered dataset, which confirms
that the filtering process reduced the variance.

One outlier amongst the approaches is RL with linear
reward, which produces very slightly less exciting tracks than
RL with default reward (5.34 vs. 6.15, delta of 0.81) but
significantly less intense (6.14 vs. 8.24, delta of 2.10) and
nauseating tracks, bringing the intensity closer to the optimal
range of 4 to 6 and making it the only approach to improve
on the dataset in terms of ride popularity (since the slightly
lower excitement is more than offset by the larger number of
guests who will consider the ride due to its lower intensity).

This difference might be explained by the RL training
process. Since excitement saturates to a maximum and cannot
increase beyond that, the agent will often learn to include a
certain fixed or semi-fixed set of pieces at the beginning of
its track to obtain the maximum excitement, then add pieces
that meet the other required target ranges (drops, speed, etc.).
However, the easiest way to reach maximum excitement is
through sequences that also cause similar increases in intensity.
The RL agent with linear reward, by contrast, does not seek
to maximize excitement right at the start of a track, and may
therefore be better able to explore the state space and add
excitement in lower intensity sequences throughout the ride.
We also note that the linear reward agent trained at a much
slower rate and took about 24 hours to reach a plateau on mean
excitement compared to 4 hours for the regular RL agent.

We also run a second experiment to investigate the role of
height in ratings. For each of our approaches, we generate
tracks of 135 pieces in a 20x20 square of height of 10, 20
or 30. Track height was controlled by preventing upward-
sloped pieces from being built if they would exceed the spec-
ified height. Figure 4 shows the excitement ratings for each
approach and height value and figure 5 shows the intensity
ratings. A different RL model was trained for each height.

As can be seen in both charts, height has a significant impact
on ratings. In particular, when height is limited to 10 units,
excitement and intensity are almost uniformly lower than their
base ratings (3.2 and 2.6, respectively). Ratings are penalized
by the game when a track has a low number of drops, low
maximum drop height or low maximum speed, all of which
can be impacted by maximum track height.

It can also be seen that the RL tracks had slightly higher
excitement than the others for all three heights. The other
approaches were trained on our dataset, which had very few
tracks of low height (only 9.1% of its tracks fit within height
of 20, and none within height of 10), and therefore likely
could not easily adapt to the size bound. By contrast, the
RL approach learned on its own and did not use the dataset.
However, the increase in excitement comes at a cost of a
correspondingly higher intensity than the other approaches,
likely since the properties that add to excitement also add
to intensity. A sample high excitement, low height track
generated from our RL approach is shown in figure 7.

C. Controllability
We generate 1,000 tracks for each of our two sets of target

properties (more gentle and more intense) using the linear RL
approach. Note that we do not train a new model for each of
the two sets of targets, but use the same model trained for the
earlier experiment (Figure 3).



CAMPBELL & VERBRUGGE: PROCEDURAL GENERATION OF ROLLERCOASTERS 7

0

1

3

4

6

7

9

10

CNN Markov Transformer RL

(default reward)

RL

(linear reward)

Dataset Dataset

(unfiltered)

4.97
4.57

3.69

4.774.664.82
5.22

8.74
8.10

6.14

8.248.108.32
8.99

6.296.49

5.34

6.156.005.865.85

Excitement Intensity Nausea

Fig. 3: Excitement, intensity and nausea ratings for the generation approaches with a maximum track size of 40x18x35 and
262 pieces, and for the dataset (both the one used for training, and the unfiltered version including tracks of any EIN value).
Error bars show 95% confidence interval. Higher excitement, lower nausea and intensity between 4 and 6 make a ride popular.

20x20x10

0

2

3

5

6

8

C
N
N

M
arkov

RL Transform
er

1.72

2.94
2.112.40

20x20x20

C
N
N

M
arkov

RL Transform
er

4.37

5.70

4.13
5.00

20x20x30

C
N
N

M
arkov

RL Transform
er

4.33

5.56

4.14
4.97

Fig. 4: Excitement ratings for the generation approaches with
maximum track size of 20x20x10, 20x20x20 and 20x20x30
and 135 pieces. Error bars show 95% confidence interval.
Higher excitement is better.

20x20x10

0

2

3

5

6

8
C
N
N

M
arkov

RL Transform
er

1.87

3.43
2.352.72

20x20x20

C
N
N

M
arkov

RL Transform
er

5.39

7.55

5.01

6.47

20x20x30

C
N
N

M
arkov

RL Transform
er

5.89
6.87

5.35

7.61

Fig. 5: Intensity ratings for the generation approaches with
maximum track size of 20x20x10, 20x20x20 and 20x20x30
and 135 pieces. Error bars show 95% confidence interval. The
best range for intensity is between 4 and 6.

0

0.3

0.6

0.9

1.2

Airtime Max. speed Avg. speed Num. drops Intensity

0.72

1.071.06

0.91
0.85

0.48

0.640.64
0.55

0.42

0.80

1.00

0.56
0.63

0.11

0.64
0.74

0.46
0.54

0.05

More gentle More intense
More gentle target More intense target

Fig. 6: Selected average target property values for linear
reward RL tracks with maximum size of 40x18x35 and 262
pieces. Error bars show 95% confidence interval for the
generated tracks. Both the actual average property value and
target values are shown. Values are normalized within the
range of the average dataset value for each target property.

We show the resulting track property average for the more
gentle tracks and more intense tracks, along with the target
value for each property, in figure 6. We use the bounds of
each target range for our gentle and intense target values; all
numbers are normalized to the average dataset values.

The figure shows that the more intense tracks have a higher
(more intense) average value in all properties compared to the
more gentle tracks, albeit to varying degrees. For example,
the two sets of tracks have a marginal difference in airtime,
whereas there is a significant difference in intensity level.
Further, for both sets of tracks the average airtime value was
much lower than the target value, whereas the intensity values
matched the target values much more closely. This result
suggests that certain properties like airtime and speed may
be difficult to learn, or at least to learn in combination with
optimizing for the other properties at the same time.

D. Plagiarism
Figure 9 shows the amount of plagiarism in our generated

tracks, i.e., the percentage of track segment sequences of



8 IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, XXX 202X

(a) An RL-generated track.

(b) Part of the grid representation for the above track.

Fig. 7: Shown in a) is an RL-generated track with EIN rating
6.63, 7.72 and 4.85. The curvy section on the right side is the
part created by the A∗ algorithm to complete the track circuit.
Shown in b) is the grid for the starting bank angle for this
track (one of eight grids that comprise the grid representation).
Flat banking is shown as blue squares, left banking as red left
triangles and right banking as green right triangles.

Fig. 8: Another RL-generated track, with EIN rating 6.50, 7.65
and 4.45. The ride begins at the station in the lower left.

Fig. 9: Percentage of track segment sequences that are present
in the dataset, for sequences of length 1 to 30, averaged over
all tracks generated from each approach for all experiments.

length n that are also present in the dataset. We omit the
pieces generated by the A∗ completion in this calculation. The
figure indicates that the RL tracks contain significantly less of
the sequences contained in the dataset tracks than the other
approaches. This result is expected since the RL approach
learns from scratch whereas the others were trained on the
dataset. The figure also shows the plagiarism for the dataset
itself, computed by comparing each individual dataset track to
all other dataset tracks, then averaging as usual.

E. Visual novelty

Results for our revised visual novelty metric are shown in
Figure 10. The figure shows the mean curve of novelty over
normalized time for each approach and the dataset. We can see
that the tracks in the dataset and those generated by approaches
that train on it gain most novelty early on; after about halfway
through the ride, riders see very little new parts of a track. By
contrast, the RL tracks exhibit a very different profile, gaining
novelty at a significantly more consistent rate throughout the
duration of the ride.

This result is interesting because the RL agent was not
rewarded to produce incremental increases in novelty. The
linear RL agent was trained to produce such for excitement,
but it fares the same here as the regular RL agent, which
is not rewarded for incremental increases at all. A further
inspection of the kinds of track segments favoured by each
approach found that the RL tracks contained 1.5-2x more flat
turns and about 1-1.5x more sloped turns than tracks of other
approaches. If a track employs a lot of quick turns, and is also
relatively dense (which RL tracks tend to be), then there are
not as many instances where a rider can see a huge amount
of new track, but only perhaps a few new pieces at each turn
or drop, which may explain this result.

F. Excitement over time

To analyze excitement over time, we plot the mean curve
for each approach and the dataset in Figure 11. For easy



CAMPBELL & VERBRUGGE: PROCEDURAL GENERATION OF ROLLERCOASTERS 9

Fig. 10: The mean curve of novelty over normalized time for
each approach and the dataset. Tracks were generated with a
maximum size of 40x18x35 and 262 pieces.

comparison with the dataset, we again limit our generated
tracks to size 40x18x35 with 262 track pieces.

We can first observe that the dataset tracks tend to gain
the majority of their excitement by the midpoint of the ride
or, more specifically, between the 30% and 50% mark. The
Markov and Transformer tracks closely follow this curve,
while the CNN and regular RL tracks gain most excitement a
bit earlier. The linear RL tracks, by contrast, gain the majority
of excitement later on in the ride, and over a longer period of
time, from the 45% to 80% mark. This difference is expected
since the goal of the linear reward approach is to approximate
a linear curve; it does not fully accomplish this, but does do
better than the others to this effect. This result shows that
we can have control over the excitement over time profile for
a track through the choice of a generation approach. We do
not claim that one is more preferable to the other, but that it
enables a larger diversity in rider experience.

Fig. 11: The mean curve of excitement over normalized time
for each approach and the dataset. Tracks were generated with
a maximum size of 40x18x35 and 262 pieces.

To further analyze the diversity of tracks with respect
to excitement over time, we cluster the tracks for selected

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

Dataset 
RL (default reward)
RL (linear reward)

Fig. 12: The path centroids of all clusters of paths generated
by the regular RL approach, linear reward RL approach and
from the dataset. Each line represents a centroid of a different
cluster. The width of a line is proportional to the number of
paths in that cluster.

approaches (RL with default reward, with linear reward and
the dataset) and show the cluster centroids in figure 12.

We can see that the centroids for each approach are offset in
time, as shown in Figure 11, but that there are differences in
the exact increases over time for each approach. Thus, we can
conclude that the tracks for the two RL approaches and for the
dataset offer varied excitement experiences over time within
a certain time window. We can also see that most centroids
gain excitement in a stepwise fashion, achieving big gains in
short bursts. This behaviour likely occurs due to the presence
of certain track segments such as sharp drops, since a drop
increases excitement through several factors at once (number
of drops, speed, G-forces, and others).

VI. DISCUSSION

Our results have shown that rollercoaster tracks can be gen-
erated with common PCG algorithms. In particular, techniques
that train on a dataset, like Markov, Transformer and CNN, can
replicate certain properties of the tracks in the dataset, such as
excitement and novelty over time. Meanwhile, reinforcement
learning can be used to obtain tracks with different excitement
and novelty over time profiles, and also less intense tracks
than the dataset; it can be said that due to this latter property,
reinforcement learning-generated tracks are in some sense
‘better’ than the average dataset track, since they will appeal
to a larger number of guests.

RL can also be used to control certain track properties to
varying extents, such as the number of drops and intensity
rating, giving the player or designer a way to choose what
tracks they prefer to generate. They also perform better in
environments not present in the dataset (such as constrained
height) and favour using track sequences not present in the
dataset more than the data-driven approaches.

One limitation with the current work is the RL agent’s
difficulty in learning to control certain track properties such as



10 IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, XXX 202X

airtime and speed. This result may suggest a longer training
time is needed or that the particular combination of targets
was infeasible. Further experimentation with target ranges may
allow for better attainment of targets and track ratings.

Beyond the metrics, a manual inspection of tracks was
informative. Some tracks were found to contain long stretches
of flat segments at high elevation, which may be monotonous
for riders and (at least in real life) costly. One track, shown
in figure 8, exhibited a very unusual property. The track,
nicknamed ‘Smile’, begins with the car going up a hill with a
chain lift, followed by a camera that takes photos of the riders,
then a further hill. However, the car does not have the speed
to climb up the latter, as it is missing a chain lift. The car
thus starts to fall backwards until it reaches the chain lift of
the previous hill, at which point it regains speed and begins to
zig-zag between the two hills (and camera) for several minutes,
until finally building up enough speed due to a quirk in the
game’s physics engine to continue up the second hill.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we investigated four PCG methods (Markov
chain, Transformer, CNN and reinforcement learning), coupled
with A* circuit completion and lookahead and backtracking
systems, to generate rollercoaster tracks for the RollerCoaster
Tycoon video game. The Markov chain, Transformer and
CNN worked well in imitating the filtered dataset of user
tracks, while the RL method worked better in producing rides
that were more popular with guests, especially in a more
constrained, low-height environment, and also allowed for
controllability of various track properties. The RL method also
allowed for different novelty over time and excitement over
time profiles, and used sequences of segments less present in
the dataset compared to other approaches.

A next step for this work could include generation using
rewriting methods, evolutionary algorithms (possibly by for-
mulating the search space as a graph) or vision transformers.
Other possibilities include extension of the RL reward function
to complete the track circuit automatically, exploring further
metrics to differentiate between tracks and conducting a user
study to evaluate the proposed visual novelty and excitement
over time metrics. It may also be useful to consider an
extension to our Gymnasium environment to allow for further
experiments in RCT beyond track construction, as well as to
make our game code changes more easily portable to updated
versions of OpenRCT2. Finally, our methodology, including
the use of reinforcement learning to generate constrained track
sequences as well as the concept of visual novelty, could be
repurposed for other sequential domains such as racing games.

REFERENCES

[1] J. Campbell and C. Verbrugge, “Procedural generation of rollercoasters,”
in Proceedings of the 2023 IEEE Conference on Games, ser. COG’23.
IEEE Press, 2023.

[2] S. Dahlskog, J. Togelius, and M. J. Nelson, “Linear levels through n-
grams,” in Proceedings of the 18th International Academic MindTrek
Conference: Media Business, Management, Content & Services. New
York, NY: Association for Computing Machinery, 2014, p. 200–206.

[3] S. Snodgrass and S. Ontañón, “Experiments in map generation using
Markov chains,” in Proceedings of the 9th International Conference on
the Foundations of Digital Games, ser. FDG’14, 2014.

[4] S. Snodgrass and S. Ontañón, “Learning to generate video game maps
using Markov models,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 9, no. 4, pp. 410–422, 2017.

[5] A. Summerville and M. Mateas, “Super Mario as a string: Platformer
level generation via LSTMs,” in Proceedings of the 1st Joint Interna-
tional Conference of DIGRA and FDG, ser. DIGRA/FDG’16, 2016.

[6] K. Sorochan, J. Chen, Y. Yu, and M. Guzdial, “Generating Lode Runner
levels by learning player paths with LSTMs,” in Proceedings of the 16th
International Conference on the Foundations of Digital Games, ser. FDG
’21. New York, NY, USA: Association for Computing Machinery, 2021.

[7] J. Togelius, S. M. Lucas, and R. D. Nardi, “Computational intelligence in
racing games,” in Advanced Intelligent Paradigms in Computer Games.
Berlin: Springer Berlin Heidelberg, 2007, pp. 39–69.

[8] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track genera-
tion for high-end racing games using evolutionary computation,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
pp. 245 – 259, 10 2011.

[9] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “PCGRL: Procedural
content generation via reinforcement learning,” in Proceedings of the
16th AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, ser. AIIDE’20. AAAI Press, 2020.

[10] S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and J. Togelius,
“Learning controllable content generators,” in Proceedings of the 2021
IEEE Conference on Games, ser. COG’21. IEEE Press, 2021.

[11] M. Cerny Green, V. Yen, S. Earle, D. Rajesh, M. Edwards, and
L. B. Soros, “Exploring open-ended gameplay features with Micro
RollerCoaster Tycoon,” arXiv e-prints, May 2021.

[12] K. Burke. (2014) Hacking RollerCoaster Tycoon with genetic
algorithms. Accessed on March 1, 2023. [Online]. Available:
https://kevin.burke.dev/kevin/roller-coaster-tycoon-genetic-algorithms/

[13] D. Ebert. (2017) Neural RCT: Using recurrent neural networks to
generate tracks for RollerCoaster Tycoon 2. Accessed on March 1,
2023. [Online]. Available: https://dylanebert.com/neural rct/

[14] B. C. Chamberlain and M. J. Meitner, “A route-based visibility analysis
for landscape management,” Landscape and Urban Planning, vol. 111,
pp. 13–24, 2013.

[15] S. Ervin and C. Steinitz, “Landscape visibility computation: Necessary,
but not sufficient,” Environment and Planning B: Planning and Design,
vol. 30, no. 5, pp. 757–766, 2003.

[16] C.-H. Chang, S. Shu, and B. King, “Novelty in theme park phys-
ical surroundings: An application of the stimulus–organism–response
paradigm,” Asia Pacific Journal of Tourism Research, vol. 19, no. 6, pp.
680–699, 2014.

[17] M. Bastiaansen, M. Oosterholt, O. Mitas, D. Han, and X. Lub, “An
emotional roller coaster: Electrophysiological evidence of emotional
engagement during a roller-coaster ride with VR add-on,” Journal of
Hospitality & Tourism Research, vol. 46, no. 1, pp. 29–54, 2022.

[18] T. John. (2014) OpenRCT2. GitHub repo. Accessed on March 1, 2023.
[Online]. Available: https://github.com/openrct2/openrct2

[19] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-art
natural language processing,” in Proc. of the 2020 Conference on Empir-
ical Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, Oct. 2020, pp. 38–45.

[20] S. Huang and S. Ontañón, “A closer look at invalid action masking
in policy gradient algorithms,” in Proceedings of the 35th Interna-
tional Florida Artificial Intelligence Research Society Conference, ser.
FLAIRS’22, May 2022.

[21] S. Snodgrass, A. Summerville, and S. Ontañón, “Studying the effects of
training data on machine learning-based procedural content generation,”
Proceedings of the 17th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 13, no. 1, pp. 122–128, Jun. 2021.

[22] J. Campbell, J. Tremblay, and C. Verbrugge, “Clustering player paths,”
in Proceedings of the 10th International Conference on Foundations of
Digital Games, ser. FDG’15, June 2015.

[23] K. Buchin, A. Driemel, J. Gudmundsson, M. Horton, I. Kostitsyna,
M. Löffler, and M. Struijs, “Approximating (k, l)-center clustering for
curves,” in Proc. 30th ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, 2019, p. 2922–2938.

[24] M. Frechét, “Sur la distance de deux surfaces,” Annales de la Société
Polonaise de Mathématique, 1925.

[25] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gon-
zalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for distributed rein-
forcement learning,” in Proceedings of the 35th International Conference
on Machine Learning, ser. PMLR’18, vol. 80, 2018, pp. 3053–3062.

https://kevin.burke.dev/kevin/roller-coaster-tycoon-genetic-algorithms/
https://dylanebert.com/neural_rct/
https://github.com/openrct2/openrct2

	Introduction
	Related Work
	Background
	Methodology
	Dataset
	Track representations
	Generation algorithms
	Lookahead & backtracking
	Track circuit completion and testing
	Metrics

	Experimental Results
	Model training
	Excitement, intensity and nausea
	Controllability
	Plagiarism
	Visual novelty
	Excitement over time

	Discussion
	Conclusions and Future Work
	References

