
Playing RollerCoaster Tycoon with Reinforcement Learning
Jonathan Campbell

jonathan.campbell@mail.mcgill.ca
McGill University

Montréal, Québec, Canada

Clark Verbrugge
clump@cs.mcgill.ca
McGill University

Montréal, Québec, Canada

Abstract
Automating gameplay in a complex environment poses challenges
for learning due to the large state and action spaces and the need
for long-term planning. This paper presents a Gymnasium envi-
ronment to allow for reinforcement learning research and experi-
mentation in the video gameRollerCoaster Tycoon, a popular amuse-
ment park simulation gamewith complexmechanics.We also present
an approach to learn to play and win several game scenarios in this
environment.

CCS Concepts
• Applied computing → Computer games; • Theory of com-
putation→ Reinforcement learning.

Keywords
game AI, reinforcement learning, deep learning

ACM Reference Format:
Jonathan Campbell and Clark Verbrugge. 2025. Playing RollerCoaster Ty-
coonwith Reinforcement Learning. In International Conference on the Foun-
dations of Digital Games (FDG ’25), April 15–18, 2025, Graz, Austria. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3723498.3723818

1 Introduction
The use of games in arti󰎓cial intelligence (AI) research has long
been a popular approach for developing and testing learning al-
gorithms, motivating the development of simpli󰎓ed or custom-
built game environments for AI experimentation [7]. In this paper,
we present such an environment for the commercially-renowned
video game RollerCoaster Tycoon, as well as detail a methodology
to play and win large parts of the game.

RollerCoaster Tycoon (RCT) is a construction and management
simulation game that o󰎎ers a rich gameplay experience. Players
design and manage amusement parks by placing rides, shops, and
paths, with one end-goal being to make their park amusing for
guests by the end of a certain in-game year. To this end, the game
contains multiple metrics to measure park success, and an AI agent
for the gamemust learn to understand thesemetrics and the spatial
and temporal properties of the game, in addition to other gameplay
mechanics such as ride unlocking.

In this paper, we introduce a new Gymnasium environment for
AI research in RCT. Unlike prior limited-scope implementations,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro󰎓t or commercial advantage and that copies bear this notice and the full cita-
tion on the 󰎓rst page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
FDG ’25, Graz, Austria
© 2025 Copyright held by the owner/author(s).
ACM ISBN /25/04
https://doi.org/10.1145/3723498.3723818

such as MicroRCT [3], this environment directly interacts with
game code, o󰎎ering a much more complex and realistic setting
to test and verify our approach. AI agents can place rides, shops,
and paths and receive statistics on park performance to guide fu-
ture decisions in order to fully play the game. The full RCT game
includes over 100 di󰎎erent scenarios, with diverse objectives and
varying levels of di󰎏culty, providing a broad and challenging land-
scape for AI learning.

Our experiments in this environment focus on a subset of these
scenarios, with the goal being to ‘win’ the objective of each by
attracting a certain number of guests to the park. To do so, we
learn the choice and placement of rides and shops throughout the
duration of a scenario using Proximal Policy Optimization with a
custom state and action space. Unlike general video game AI mod-
els that rely on raw pixel data, our custom state representation
e󰎏ciently isolates the most pertinent features of the environment,
thereby reducing computational overhead. These experiments of-
fer insights into the e󰎎ectiveness of AI techniques when applied
to this highly dynamic and intricate environment.

Speci󰎓c contributions of this work include:
• a Gymnasium environment in which reinforcement learn-
ing (RL) experiments for ride and path placement and ride
selection in the full RCT game can be conducted,

• an approach to play a full scenario in RCT by selecting and
placing rides and shops, with the goal of attaining the in-
game objective, and

• results that show the ability of the RL agent to train on and
win multiple scenarios.

2 Related Work
Arti󰎓cial intelligence algorithms have been applied to many types
of games; we focus here on work done with respect to simulation
games.

Rios and Chaimowicz [14] developed an AI for Transport Ty-
coon which focused on managing railroad routes using A∗ with
some heuristics. Their approach was able to defeat the in-game
AI. Later, Konijnendijk [10] applied Monte Carlo Tree Search to
the same environment with mixed results. In the domain of city-
building simulations, Earle used fractal neural networks to play
SimCity [4], and showed the ability of their model to generalize to
varying board sizes.

With regards to reinforcement learning in particular, deep RL
has shown great capability in playing video games over the past
decade [15]. It has been used to achieve excellent performance in
many arcade games [13], board games like Chess and Go [16] and
3D 󰎓rst-person shooters like Doom [11], amongst others.

The work most closely related to our own is by Cerny Green
et al. [3], who introduced MicroRCT, a simpli󰎓ed environment in-
spired by RCT. Like in RCT, rides and shops can be selected and

https://doi.org/10.1145/3723498.3723818
https://doi.org/10.1145/3723498.3723818

FDG ’25, April 15–18, 2025, Graz, Austria Jonathan Campbell and Clark Verbrugge

placed in order to optimize certain metrics for guests. The authors
then use the MAP-Elites algorithm to explore the design space of
their environment, considering combinations of metrics like ex-
citement and intensity of rides. However, MicroRCT represents
a very limited subset of the full RCT game environment. In Mi-
croRCT, a 󰎓xed number of guests visit the park, not dependent on
any metrics; the guests then follow a 󰎓xed path structure, around
which rides and shops can be placed; their path󰎓nding and ride
consideration behaviour is also simpli󰎓ed, and money is not con-
sidered.While theirwork introduced a valuable exploration of RCT
mechanics and its design space, our approach goes further by uti-
lizing the authenticmechanics of the gamewith onlyminimal omis-
sions. Speci󰎓cally, our model directly interfaces with game code
and thus retains the original mechanics for guest spawning, paths,
path󰎓nding and behaviour. These mechanics provide a much more
detailed and accurate simulation and introduce a large number of
complexities which is not modelled in MicroRCT. By consequence,
our model can play o󰎏cial, complete game scenarios, each with
varying path structures and ride availability. We note also that we
initially tried to use the MicroRCT environment in initial tests, but
the solutions learned by our agent did not transfer well to the real
game.

In the same MicroRCT environment, Earle et al. [5] used re-
inforcement learning to demonstrate controllable procedural con-
tent generation. Their generators learned to build rides and shops
such that speci󰎓ed levels of guest happiness were obtained.

Finally, in other work in RCT, Campbell and Verbrugge [2] pre-
sented an approach to procedural content generation of rollercoast-
ers using reinforcement learning, with the ability to control vari-
ous properties of a ride such as its excitement, intensity and nau-
sea. Earlier e󰎎orts by Burke [1] explored genetic algorithms for the
same purpose, while Ebert [6] applied recurrent neural networks
(RNNs).

3 Background
RollerCoaster Tycoon (RCT) is a series of best-selling amusement
park simulation games created by Chris Sawyer. In these games,
players design andmanage theme parks by constructing rides, con-
cession stalls, paths and scenery. Simulated guests traverse the
paths, go on rides and buy from the shops. Figure 1 shows a game
screenshot.

The game includes many di󰎎erent theme parks, called scenar-
ios, that that can be played. These scenarios each di󰎎er based on
terrain, ride availability, initial ride placement and path structure
(if any), objective and various other properties. We discuss some
of these properties below, including rides, the number of guests,
park rating and ride research.

Many di󰎎erent kinds of rides and shops can be built in the game.
There are two general types of rides: 󰎐at rides and rideswith tracks.
Flat rides are those that comprise a single unit to be placed, e.g., a
merry-go-round, haunted house or ferris wheel. By contrast, rides
with tracks, such as rollercoasters and water rides, consist of mul-
tiple di󰎎erent pieces that must be individually placed, and are typ-
ically much larger in surface area. For our experiments, we limit
selection to 󰎐at rides so that placement is easier. We allow place-
ment of almost all 󰎐at rides (16 types), with shapes ranging from

3x3 to 7x1. We also allow placement of all 30 in-game shops, in-
cluding food stalls, drink stalls, restrooms and other facilities. (We
hope to extend to rollercoasters in future.)

Each ride has metrics that describe its e󰎎ect on guests: an ex-
citement, intensity and nausea rating. The more exciting the ride,
the more likely a guest will want to ride it. Each guest also has a
preferred intensity range, and will want to go on rides that fall in
that range. Guests also have a variable nausea tolerance, refusing
to go on rides over their threshold. Therefore, a ride can be more
or less popular depending on its ratings, and certain rides will be
more popular with certain guests. Another factor in󰎐uencing the
popularity of a ride is its price. Each ride has a secret ride value
calculated by the game, based in part on its three ratings. If the set
price exceeds this secret value, guests will not 󰎓nd it worthwhile
to go on the ride. Therefore, a player must seek to optimize this
hidden value so that they do not set the price too high. Rides also
in󰎐uence the number of new guests that visit the park, with each
di󰎎erent kind of ride adding a 󰎐at number.

Indeed, the number of new guests that visit the park is a critical
measure of its success. The more guests, the more money that can
be made which can be used to create further rides. Further, and
important for our experiments, the goal of many of the in-game
scenarios is to attain a certain number of guests to the park by
a certain in-game month (typically two or three in-game years)
while maintaining a certain park rating. (There are other goals in
other scenarios, but we omit them for the present work.)

Park rating is another measure of a park’s success. It is a com-
bination of many factors, including the number of highly exciting
rides, the number of guests and guests whose happiness exceeds a
certain threshold. Guests are considered happy if all of their needs
are met, including going on rides that match their preferences, and
not being hungry, thirsty, needing to go to the restroom amidst
other criteria, which is where the importance of shops and facili-
ties like restrooms comes into play.

Ride and shop selection is therefore critical as it in󰎐uences park
rating, number of guests and guest happiness. Other mechanics
that a󰎎ect such metrics include ride age and breakdowns, litter
and weather, but we omit these for our experiments.

Finally, an important scenario property is ride availability. Each
scenario has a di󰎎erent selection of rides and shops that can be
built. Some can be built right at the start of the scenario, while
others are unlocked by a research mechanic as time goes on. Thus,
rides that are more exciting may appear soon in one scenario, but
much later in another, forcing the player to adopt a di󰎎erent strat-
egy.

4 Environment
In this section we present our Gymnasium environment for Roller-
Coaster Tycoon, whose code we release publicly1.

As mentioned earlier, our environment directly interfaces with
the game code, and speci󰎓cally, the open-source reimplementa-
tion of RCT2 known as OpenRCT2 [9]. To do so, we have forked
the game repository and made changes to a small number of 󰎓les.
In particular, we have added the ability to send commands to the
game over a socket, and the code to process these commands.

1Our code can be found at https://github.com/campbelljc/rctrl.

https://github.com/campbelljc/rctrl

Playing RollerCoaster Tycoon with Reinforcement Learning FDG ’25, April 15–18, 2025, Graz, Austria

Figure 1: A screenshot of part of a player-created amuse-
ment park inRCT2. The path structure is in grey,with queue
lines in blue leading up to the entrances of di󰎎erent rides,
including a swinging pirate ship in the bottom right. Several
food and drink stalls as well as a restroom and information
kiosk are scattered around the paths.

We have implemented the following commands, which we sort
into categories:

• park management: loading a scenario, opening and closing
a park, pausing and unpausing the game, setting the game
speed.

• ride management: placing a 󰎐at ride or path at a given po-
sition with a given price.

• information retrieval: the current path and ride structure,
the list of currently researched rides, average guest happi-
ness, path visit counts, park rating, company value, park
value, cash on hand, ride statistics (excitement, intensity,
nausea, popularity, pro󰎓t), total guest thoughts on negative
subjects and information on the scenario objective.

• simulation: running the game simulation for a speci󰎓ed num-
ber of game ticks (defaulting to a month).

One bene󰎓t of interfacing directly with the game is that the
rides, paths and simulation can be seen graphically as a player
would, which enables easier debugging and observation. To en-
sure the fastest speed possible, however, we turn o󰎎 all animation
while the simulation is running, so that the graphics will update
only in small increments (e.g., at the conclusion of each month).
Further, all commands are executed in pause mode, again to in-
crease speed. Doing so has a small advantage compared to a hu-
man player, who cannot build while paused, but an e󰎏cient hu-
man could build quickly and then turn pause on again, so we do
not foresee this di󰎎erence to be impactful.

Finally, for our experiments, we also turn o󰎎 certain game me-
chanics which would take longer to learn, but which can likely
easily be solved algorithmically. Such aspects include those related
to hiring sta󰎎 such as handymen (no littering) and mechanics (no
ride breakdowns).

There is also a 󰎓nancial element to scenarios. Players must man-
age their cash on hand and can build rides or shops only if they
have enough money. However, players can take out loans in the
game; for our experiments, we automatically increase the loan to
a su󰎏cient amount if we run out of money. We note however that
in scenarios that the agent learns to win, it typically breaks even
by the end since cash usually increases with number of guests. We
leave a future exploration of cash (e.g., pro󰎓t maximization) to fu-
ture work.

5 Methodology
We present our approach for playing RCT below. We begin with a
description and analysis of our dataset, followed by details on our
reinforcement learning methodology.

5.1 Dataset
To validate our approach, we train on scenarios provided with the
game. RollerCoaster Tycoon 2 has a total of over 150 scenarios,
when including those from its expansion packs and from the 󰎓rst
game in the series as well. Some scenarios have a di󰎏culty: of
those, 34 are considered at beginner level, 48 are challenging and
37 are expert. Each scenario also has an objective, of which there
are 10. The most common objective (82 scenarios) is to achieve a
certain number of guests by a certain year; this objective is the one
considered for this paper, while the rest are left to future work.

We split these 82 scenarios them into their respective di󰎏culties
and also number of years until the objective must be met. We then
use for this paper six of the beginner di󰎏culty scenarios: Forest
Frontiers (250 guests at the end of one year), Electric Fields (700
guests, two years), Bumbly Beach (800, two years), Barony Bridge
(1200, three years), Crater Lake (1300 guests, three years) and Fu-
ture World (1500 guests, three years).

Since the scenarios could be considered copyrightable gamema-
terials, we do not include them with our code, but instead provide
a script that automatically sorts the parks into the categories listed
above and provides statistics given the game’s data folder.

Finally, some parks have a starting path structure, but a small
number do not. Our RL agent currently does not build paths on
its own, but requires paths so that rides can be placed adjacent to
them. Therefore, we add to the latter parks a simple path structure
so that there is enough space for rides. See Figure 2 for an exam-
ple scenario which already has a path (and some rides) to start,
and Figure 3 for a park where the path structure was augmented
manually.

5.2 Reinforcement learning approach
We use Proximal Policy Optimization (PPO) as our RL algorithm.
Below we discuss the speci󰎓cs of our environment: state and ac-
tion space, episode initialization and length, network architecture,
termination condition and reward function.

5.2.1 State space. Our state space is comprised of a 2D grid with
multiple channels containing all information that may be pertinent
to the agent’s decision-making. The grid shape is set to (87, 87)
which 󰎓ts the majority of game scenarios, omitting outliers. The
grid channels include the following:

FDG ’25, April 15–18, 2025, Graz, Austria Jonathan Campbell and Clark Verbrugge

Figure 2: A screenshot of the Bumbly Beach game scenario,
in which there is already a path structure, three rides and an
information kiosk in the game’s starting con󰎓guration.

Figure 3: A screenshot of the Barony Bridge game scenario.
Normally, the scenario startswith a single path fromcoast to
coast. We augment the path structure with a square pattern
to increase the number of rides that can be placed adjacent.

• one for each di󰎎erent ride type (boolean), indicating if a ride
is at that position (either entrance, exit or other part),

• one for the price of a ride (󰎐oat),
• one each for the excitement, intensity, nausea, popularity
and pro󰎓t of a ride (󰎐oat),

• one for paths (boolean),
• one for sloped paths (boolean),
• one for queues (boolean),
• one for z-coordinate (󰎐oat),
• one for path visit counts (󰎐oat), and
• one for whether a square is otherwise occupied (e.g., by a
ride that was present at the start of the scenario).

All values are normalized where appropriate. There are also
three further channels to represent information about the entire
current state instead of a single square; in these cases, the single
value is repeated over the entire grid:

• one for the current month divided by the total number of
months until the objective is met (󰎐oat),

• one for the number of guests that must be met for the ob-
jective to be won, and

• one each for the current targets to be maximized, discussed
further below (󰎐oat).

We note that all the above information is public, that is, it is
exposed to the player. There are other properties which could be
useful for an RL agent, such as average guest happiness or ride
values, but which a player cannot see directly, and we thus do not
include those.

5.2.2 Action space. The action space consists of three parts: one to
specify the (y, x) position to place the ride (a vector of probabilities,
one for each grid square); one to specify the ride type (a vector, one
for each ride type), and a third to specify the ride’s price (a 󰎐oat).

Rides can be added at any position adjacent to a path, as long as
there is su󰎏cient space to place a ride at that location. Speci󰎓cally,
we check, for each path-adjacent coordinate, if there is space for a
queue line of length 3, a ride entrance and exit, and then a 3x3 ride
beyond that. We also check that the z coordinate of these squares
is not higher than the path’s z coordinate, nor is it too much lower,
and that no square is currently occupied by a path or ride or out of
bounds of the map, to satisfy the game’s building constraints. The
logits corresponding to invalid squares are masked so that these
actions are not selected, which is a common practice to increase
RL learning e󰎏ciency when there are many invalid actions [8].

We also add the possibility of replacing existing rides. Rides can
be replaced with other rides as long as they are of the same size.

We also apply action masking to the ride type output. We mask
all ride types that are not currently researched in the scenario. As
the scenario unfolds and rides are researched, they are no longer
masked; some rides are masked for the duration of a scenario if
they are not present in it at all or not researched in time. (Each
scenario has a di󰎎erent unlocking order and di󰎎erent selection of
rides that can be researched which extends beyond the objective
cut-o󰎎.)

We also add a ‘skip’ ride type to skip a timestep without placing
anything. This action is only enabled when the map is full of rides
and there are no more possible positions.

When any other action is taken, a command is sent to the game
to place an entry queue line and exit path, followed by the ride
entrance and exit, followed by the ride itself. Then, we then run
the simulation for a certain number of ticks, until the next ride
needs to be placed.

5.2.3 Episode initialization and length. Asmentioned at the end of
section 3, each scenario has a di󰎎erent selection of rides and shops
that can be built – some at the start, some unlocking during the
scenario and some that are not present in that scenario. To be able
to choose the best rides/shops available at the start or during any
scenario, we vary the ride research schedule at the beginning of
each episode on a 󰎓xed scenario. Speci󰎓cally, we make 10 random
rides/shops available at the start of a scenario, and then unlock one
new ride/shop at random at the beginning of each month; these
numbers mimic the ones used in-game.

As to the number of actions per episode, we vary it based on the
number of months until the objective is met. We place a number
of rides equal to 1.5 times the number of months. This number at-
tempts to mimic the gameplay of human players, who likely place

Playing RollerCoaster Tycoon with Reinforcement Learning FDG ’25, April 15–18, 2025, Graz, Austria

rides throughout the duration of a scenario; it also modulates in-
game cost and space concerns. Furthermore, since new ride types
are continuously unlocked throughout the duration of a scenario,
we anneal the number of rides to be placed per month over time,
so that more rides are placed near the end when more are available
to be chosen from. In particular, we use the formula

√
i󳕐

i
√
i
∗ X for

every month i , where X is the total number of rides to place in the
scenario.

5.2.4 Network architecture. The 87x87 grid is passed through a
stack of four 2D convolutional layers (with 32 󰎓lters each and ker-
nel size 3x3). It is then passed through four 2D de-convolutional
layers, so that the output size is also 87x87 (but with one channel).
This grid is 󰎐attened and then passed separately to the three dense
layers, one for each component of the action space.

5.2.5 Termination condition & reward function. We terminate an
episode at the end of the scenario’s duration (typically two or three
years), at which point the game reports whether the objective has
been won or lost. We then reward the agent a 󰎐at bonus between
5 and 15 if it has won the objective, with the amount dependent
on the scenario duration, with longer scenarios obtaining a higher
reward. We found this di󰎎erence to be important when training on
multiple scenarios of di󰎎ering lengths at the same time.

For shorter scenarios, this reward is su󰎏cient to learn to win.
However, in testing, it was found to be much harder to win scenar-
ios of three or more years. Therefore, we introduce a partial reward
at each timestep related to how much the number of guests in the
park has changed since the last timestep. This reward for the target
number of guests guides the agent towards winning the objective.

For longer duration scenarios which require more guests, this
partial reward is still not su󰎏cient. In these cases, special factors
can arise that must be considered. For instance, after some time
has passed, guests may complain about the absence of a restroom
(or the high price of a restroom), causing attrition. Therefore, we
also add partial rewards for the di󰎎erence between timesteps of the
percentage of guests who have a thought of needing to go to the
restroom, being hungry, thirsty, thinking a facility fee is too high
or that they can’t path󰎓nd to a ride. (Guests express their desires
in the game through thoughts, which then go on to in󰎐uence park
rating and other metrics.)

We note that the number of guests in the park, as well as the
number of guest thoughts per thought category, is public knowl-
edge and accessible to players; indeed, it is often used by players
to 󰎓nd out how to improve their park.

Finally, we give a reward of -1 if the game reports that the placed
ride or shop cannot be built (and we do not run the simulation but
instead immediately choose a new action). Although we have tried
to ensure the agent chooses only valid actions by masking the in-
valid actions as discussed above, there can be certain small issues
that arise. For example, there are many ride sizes, but we only ver-
ify that a 3x3 ride (the most common ride size) can be placed. It
is possible that a 7x1 ride is chosen but cannot 󰎓t in the speci󰎓ed
area. Since this issue can arise frequently, and since the prolifer-
ation of -1 rewards was found to disturb the learning process, we
disable some of the game’s construction checks. We note that this

simpli󰎓cation does not give too much of an advantage over hu-
man players, since they can manage space much more e󰎎ectively
by varying the placement, length and slope of queue lines, which
our agent does not support.

6 Experimental Results & Discussion
In this section we describe the training of our RL agent, followed
by the results on our six dataset scenarios.

6.1 Model training
The RLmodelwas trained using the RLlib implementation of PPO [12]
on an M1 Max chip with TensorFlow 2 and eight rollout workers.
Training was ended when the number of wins over all scenarios
in the experiment reached a plateau, which came at about 130,000
timesteps or about 24 hours. Hyperparameter values included 5e-
5 for learning rate, 0.3 for clip parameter, 10 for value function
clip parameter, 1.0 for value function loss coe󰎏cient, 0.2 for KL
coe󰎏cient and 0.01 for KL target, 0.01 for entropy coe󰎏cient, all
determined through a grid search in a smaller-sized environment.

6.2 Results on scenario objectives

Forest Frontiers

Electric Fields

Bumbly Beach

Barony Bridge

Crater Lake

Future World

Win percentage
0% 25% 50% 75% 100%

0

0.3

0.99

1

0.97

0.88

Figure 4: Win percentages for the four scenarios.

After training our model on a single scenario (Barony Bridge),
we run it 100 times on each of the six scenarios. Win percentages
for objectives are shown in Figure 4; the scenarios are ordered in
terms of di󰎏culty.

The 󰎓gure shows that the RL agent was able to learn to win the
scenario on which it was trained (Barony Bridge) as well as all the
easier scenarios, with a very high success rate. Meanwhile, for the
two harder scenarios which require a larger number of guests, the
win rate is much lower.

Statistics about the kinds of rides favoured by the RL agent in
di󰎎erent scenarios can be seen in Figure 5. We select Forest Fron-
tiers and Barony Bridge as they are quite di󰎎erent in terms of sce-
nario length (one vs. three years) and required number of guests
(250 vs. 1200); it is thus expected that the rides selected by the
agent will di󰎎er. Indeed, the 󰎓gure shows that in Forest Frontiers,
various gentle rides are chosen, while in Barony Bridge, the most
popular ride is the Top Spin, a more exciting ride which attracts a
larger number of guests to the park.

We also present the most frequent rides placed at the 󰎓rst and
last timesteps for all four scenarios, as well as their average price,
in Figure 6. The 󰎓gure shows that the merry-go-round is favoured

FDG ’25, April 15–18, 2025, Graz, Austria Jonathan Campbell and Clark Verbrugge

0%

15%

30%

45%

60%

Ferris wheel
Merry-go-round
Twist
Spiral slide
Coffee shop
Top spin
Circus
Burger bar

Forest Frontiers Barony Bridge

Figure 5: Most popular rides for two of the scenarios.

Rides placed at first timestep
Scenario Ride % of rides placed Average price
Forest Frontiers Ferris wheel 55.79% $3.38
Electric Fields Ferris wheel 63.74% $2.50
Bumbly Beach Ferris wheel 70.33% $2.24
Barony Bridge Ferris wheel 40.66% $1.54
Crater Lake Twist 87.50% $4.09
Future World Twist 38.20% $3.67

Rides placed at last timestep
Scenario Ride % of rides placed Average price
Forest Frontiers Ferris wheel 39.56% $1.31
Electric Fields Ferris wheel 59.04% $0.11
Bumbly Beach Ferris wheel 27.27% $0.19
Barony Bridge Ferris wheel 46.59% $0.16
Crater Lake 3D Cinema 85.11% $0.11
Future World 3D Cinema 45.00% $0.10

Figure 6: The rides placed the most at the 󰎓rst and last
timestep for all six scenarios, and their average price.

as the 󰎓rst ride to be placed in most scenarios, likely because it is
most common to be unlocked at the start of each, while the top-
spin is favoured as the 󰎓nal ride in the harder scenarios. We also
note that the average price of these rides is higher at the start and
lower at the end. The agent was not trained to maximize pro󰎓t,
so it is likely that it has set prices lower at the end since it assigns

more credit to actions taken at the end of an episode, and the lower
the price, the more guests will ride it; it could also be that guests
have less money after having been in the park for some time, so
the prices must thus be lower.

Finally, Figure 7 shows the result of a Barony Bridge scenario
played by the RL agent.

Figure 7: A screenshot of the Barony Bridge scenario near
the ending month, after rides have been placed by an RL
agent.

7 Conclusions and Future Work
In this paper, we introduced a new Gymnasium environment for
RollerCoaster Tycoon, enabling reinforcement learning experiments
in a rich simulation setting with the full spectrum of gameplay me-
chanics, including spatial planning, temporal decision-making and
ride unlocking.

We also presented a methodology to play the game using rein-
forcement learning. Using a custom-de󰎓ned state and action space,
our agent learned to select and place rides and shops e󰎎ectively,
achieving the in-game objectives in several scenarios.

While our experiments focused on only a small subset of sce-
narios, the positive results indicate that RL agents can be trained
to handle the diverse challenges of the game. Looking forward,
we hope to expand our work to further, more di󰎏cult scenarios,
including higher number of guest targets and other scenario ob-
jectives such as pro󰎓t maximization. We also hope to explore the
transferability of the trained models to other, unseen scenarios.

Another avenue to explore we would like to explore is the use
of procedural content generation (PCG) in the game; for instance,
the generation of a park that meets the scenario objective while
also meeting other requirements, such as attaining a certain prof-
itability, using a set number of unique rides, and so on. Similarly,
PCGmight be used to generate a path structure, which would help
to create a more holistic approach to playing the game.

Acknowledgments
This work was supported by the Fonds de recherche du Québec,
grant number 285499, as well as Natural Sciences and Engineering
Research Council of Canada grant RGPIN-2019-05213.

Playing RollerCoaster Tycoon with Reinforcement Learning FDG ’25, April 15–18, 2025, Graz, Austria

References
[1] Kevin Burke. 2014. Hacking RollerCoaster Tycoon with Genetic Algorithms.

https://kevin.burke.dev/kevin/roller-coaster-tycoon-genetic-algorithms/ Ac-
cessed on March 1, 2023..

[2] Jonathan Campbell and Clark Verbrugge. 2024. Procedural generation of roller-
coasters. IEEE Transactions on Games (2024), 1–10. doi:10.1109/TG.2024.3404001

[3] Michael Cerny Green, Victoria Yen, Sam Earle, Dipika Rajesh, Maria Edwards,
and L. B. Soros. 2021. Exploring open-ended gameplay features with Micro
RollerCoaster Tycoon. arXiv e-prints (May 2021).

[4] Sam Earle. 2019. Using Fractal Neural Networks to play SimCity 1 and Con-
way’s Game of Life at Variable Scales. In Proceedings of the AIIDE Workshop on
Experimental AI in Games.

[5] SamEarle,Maria Edwards, AhmedKhalifa, Philip Bontrager, and Julian Togelius.
2021. Learning Controllable Content Generators. In Proceedings of the 2021 IEEE
Conference on Games (Copenhagen, Denmark) (COG’21). IEEE Press, 9 pages.
doi:10.1109/CoG52621.2021.9619159

[6] Dylan Ebert. 2017. Neural RCT: Using recurrent neural networks to generate
tracks for RollerCoaster Tycoon 2. https://dylanebert.com/neural_rct/ Accessed
on March 1, 2023..

[7] Chengpeng Hu, Yunlong Zhao, Ziqi Wang, Haocheng Du, and Jialin Liu. 2024.
Games for Arti󰎓cial Intelligence Research: A Review and Perspectives. IEEE
Transactions on Arti󰎓cial Intelligence (2024), 1–20. doi:10.1109/TAI.2024.3410935

[8] Shengyi Huang and Santiago Ontañón. 2022. A Closer Look at Invalid Ac-
tion Masking in Policy Gradient Algorithms. In Proceedings of the 35th Inter-
national Florida Arti󰎓cial Intelligence Research Society Conference (FLAIRS’22).
doi:10.32473/󰎐airs.v35i.130584

[9] Ted John. 2014. OpenRCT2. GitHub repo. https://github.com/openrct2/openrct2
Accessed on March 1, 2023..

[10] Geert Konijnendijk. 2015. MCTS in OpenTTD. Bachelor’s Thesis. Maastricht,
Netherlands. Advisor(s) Mark Winands.

[11] Guillaume Lample and Devendra Singh Chaplot. 2017. Playing FPS games with
deep reinforcement learning. In Proceedings of the Thirty-First AAAI Conference
on Arti󰎓cial Intelligence (San Francisco, California). AAAI Press, 2140âĂŞ2146.

[12] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions
for Distributed Reinforcement Learning. In Proceedings of the 35th International
Conference on Machine Learning (PMLR’18, Vol. 80). 3053–3062.

[13] VolodymyrMnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
2015. Human-level control through deep reinforcement learning. Nature 518,
7540 (Feb. 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[14] Luis Henrique Oliveira Rios and Luiz Chaimowicz. 2009. trAIns: An Arti󰎓cial
Inteligence for OpenTTD. In 2009 VIII Brazilian Symposium on Games and Digital
Entertainment. 52–63. doi:10.1109/SBGAMES.2009.15

[15] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. 2019.
A Survey of Deep Reinforcement Learning in Video Games. arXiv e-prints (De-
cember 2019). http://arxiv.org/abs/1912.10944

[16] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. 2018. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140–
1144.

https://kevin.burke.dev/kevin/roller-coaster-tycoon-genetic-algorithms/
https://doi.org/10.1109/TG.2024.3404001
https://doi.org/10.1109/CoG52621.2021.9619159
https://dylanebert.com/neural_rct/
https://doi.org/10.1109/TAI.2024.3410935
https://doi.org/10.32473/flairs.v35i.130584
https://github.com/openrct2/openrct2
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1109/SBGAMES.2009.15
http://arxiv.org/abs/1912.10944

